Media aritmética para datos agrupados

La media aritmética para datos agrupados es conceptualmente la misma que la media aritmética para datos no agrupados, pero su cálculo en la práctica a partir de la distribuciones de frecuencias es diferente (consulta, además, datos agrupados). Veamos un ejemplo:

Las calificaciones obtenidas por un grupo de alumnos en un examen se distribuyen según se indica a continuación:

\(x_i\) (calificaciones)
\(n_i\) (número de alumnos)
5
1
6
3
7
4
8
2

Tamaño muestral=10

Un aprendiz torpe de estadística calcularía la media aritmética de las calificaciones de esta forma, utilizando la fórmula de la media para datos aislados:

$$\overline{x}=\cfrac{5+6+7+8}{4}=6.5$$

Dicho cálculo es erróneo porque en este caso los valores \(x_i\) no representan a los datos, sino a los valores de la variables. Dicho de otra forma, los  datos no son 5-6-7-8 sino 5-6-6-7-7-7-7-8-8, esto es, hay que tener en cuenta evidentemente que los valores de la variable aparecen diferente número de veces en la distribución; por tanto, la media aritmética sería (5+6+6+7+7+7+7+8+8)/10. Para evitar sumar el mismo dato una y otra vez, lo podemos hacer multiplicando cada valor de la variable por su frecuencia absolutua: (1x5+2x6+4x7+2x8)/10. Normalmente, el cálculo se hace a través de una columna que se añade a la columna de frecuencias y que representa las sumas parciales para cada valor:

\(x_i\) (calificaciones)
\(n_i\) (número de alumnos)
\(n_ix_i\) (sumas parciales)

5

1
5
6
3
18
7
4
28
8
2
16

Tamaño muestral=10 Total=67

Resultando de esta forma la media:

$$\overline{x}=\cfrac{67}{10}=6.7\ puntos$$

Por tanto, la fórmula general para la media aritmética con datos agrupados es la siguiente:

$$\overline{x}=\cfrac{\sum_i n_ix_i}{\sum_i n_i}$$

Cuando los datos se han agrupado en intervalos, no es posible calcular la media aritmética directamente con la fórmula anterior, ya que en lugar de los valores \(x_i\) tenemos una serie de intervalos de clase. En estos casos, se sustituye el intervalo por su marca de clase o punto medio del intervalo como representativo de todo el intervalo. Suponiendo que los datos se distribuyen uniformemente a lo largo del intervalo, se considera que no hay un error sistemático derivado de la utilización  de la marca de clase como valor representativo de todos los datos incluidos en el intervalo ya que los errores por exceso se compensan generalmente con los errores por defecto. Veamos un ejemplo.

Intervalo de notas
\(n_i\) (número de alumnos)
5-6
2
6-7
5
7-8
6
8-9
4
9-10
3

Tamaño muestral=20

Sustituyendo los intervalos por su marca de clase y operando de la misma forma que en el ejemplo anterior:

Intervalo de notas
\(x_i\) (marca de clase)
\(n_i\) (número de alumnos)
\(n_ix_i\) (sumas parciales)
5-6
5.5
2
11
6-7
6.5
5
32.5
7-8
7.5
6
45
8-9
8.5
4
34
9-10
9.5
3
28.5

  Tamaño muestral=20
Total=151

Resultado este forma esta media aritmética:

$$\overline{x}=\cfrac{151}{20}=7.55\ puntos$$

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Media aritmética para datos agrupados" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Variable estadística unidimensional

Una variable estadística unidimensional es una variable estadística que recoge o mide únicamente una característica de una serie de elementos; por ejemplo, el peso en un grupo de niños o el nivel de estudios en un conjunto de personas. En el caso de una variable unidimensional cuantitativa, su anál...

Recorrido intercuartílico

Recorrido o rango intercuartílico o intercuartil es la diferencia entre el tercer y el primer cuartil de una distribución estadística. Se denomina habitualmente con las siglas IQR (InterQuartile Range): [latexpage] $$IQR=Q_3-Q_1$$ De esta forma, el recorrido intercuartílico comprende el recorrido ...

Correlación espuria (correlación espúrea)

La correlación espuria o correlación espúrea es aquella más o menos intensa y significativa correlación estadística entre dos variables, que sin embargo no muestran ningún relación causal o teórica entre sí. Un ejemplo es la alta correlación que se podrái observar entre las notas de matemáticas y la...

Momentos muestrales

Los momentos muestrales son un conjunto de estadísticos muestrales o fórmulas genéricas relativas a una distribución de datos que pretenden caracterizar dicha distribución de forma sistemática. Para una distribución estadística cuantitativa unidimensional se distinguen los momentos respecto al orige...