V de Cramér

cramerv.pngEl coeficiente V de Cramér es una medida de la asociación estadística entre dos variables cualitativas recogidas en una tabla de contingencia, calculada a partir del estadístico chi-cuadrado. Fue propuesto por el matemático y estadístico sueco Harald Cramér (1893 –1985) en 1946. Se calcula a través de la siguiente fórmula:

$$V=\sqrt{\cfrac{\chi^2}{n \times min(r-1,c-1)}}$$

siendo \(\chi^2\) el valor del estadístico chi-cuadrado, \(n\) el tamaño muestal y \(r\) y \(c\) el número de filas y columnas de la tabla de contingencia que reúne los datos de las dos variables cuantitativas.

Presenta como ventaja que su valor está normalizado, esto es, está comprendido entre 0 y 1, a diferencia de otras medidas de asociación como el coeficiente de contingencia de Pearson, que necesitan de un ajuste o corrección posterior para obtener un valor normalizado. Aunque lo correcto para determinar si dos variables cualitativas presentan asociación a partir de la V de Cramér es determinar su significación estadística a partir de su distribución muestral bajo la hipótesis de independencia, a priori puede afirmarse que los valores superiores a 0.6 denotan una asociación entre variables intensa, a expensas siempre de los resultados obtenidos en investigaciones similares. Sin embargo, el hecho de que la fórmula del coeficiente V de Cramér dependa de las dimensiones de la tabla es un inconveniente a la hora de interpretar de forma homogénea un valor concreto del coeficiente.

El coeficiente V de Cramér es equivalente al coeficiente phi cuadrado, utilizado para medir la asociación en tablas de contingencia 2x2 o binarias, ajustado para que tome valores en el intervalo de 0 y 1.Cuando la tabla de contingencia es 2x2, phi toma como valor máximo 1, pero no es así cuando la tabla tiene dimensiones superiores. Em esos casos, el coeficiente phi cuadrado tiene como valor máximo \(min(r-1,c-1)\), siendo \(r\) el número de filas, y \(c\) el número de columnas. La solución propuesta por Harald Cramér para normalizar el coeficiente phi y llevarlo al intervalo de valores posibles entre 0 y 1, es dividir phi cuadrado entre dicho valor máximo, y lñuego calcular su raíz, dando lugar directamente al coeficiente V que lleva su nombre:

$$V=\sqrt{\cfrac{\phi^2}{min(r-1,c-1)}}=\sqrt{\cfrac{\chi^2}{n \times min(r-1,c-1)}}$$

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"V de Cramér" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Media condicionada

En una distribución conjunta de varias variables estadísitca, una media condicionada es la media que toma los valores de una variable para un valor dado de otra variable. Por ejemplo, si disponemos de los datos de altura y perso para un grupo de personas; una media condicionada seria la media del pe...

Coeficiente de asimetría de Pearson

El coeficiente de asimetría de Pearson (Karl Pearson, 1857-1936) es una medida de asimetría estadística que se basa en la diferencia entre media aritmética, mediana y moda para cuantificar la dirección y el nivel de asimetría de una distribución estadística, normalizando el resultado dividiendo el r...

Estadísticos robustos

Estadísticos robustos son aquellos estadísticos muestrales cuyos resultados y conclusiones no se ven afectadas por el incumplimiento de las condiciones que se exigen para su utilizacion en un procedimiento, como por ejemplo el muestreo aleatorio, el modelo estadístico que se ha establecido previamen...

Hipótesis estadística

Las hipótesis estadísticas son afirmaciones tentativas sobre parámetros y características de una población estadística que se establecen con el objetivo de ser validadas o confirmadas, o si no, rechazadas, en base a la información recogida de una muestra perteneciente a esa población. Puede interes...