Distribución geométrica

La distribución geométrica es la distribución de probabilidad del número de fracasos obtenidos hasta conseguir el primer éxito en un proceso de Bernoulli. La función de cuantía de la distribución, que proporciona la probabilidad antes mencionada, es la siguiente, siendo p la probabilidad de éxito en cada experimento y (1-p) la probabilidad de fracaso:

$$P[X=x]=(1-p)^x \cdot p\ ; \ x=0,1,2,...$$

Por ejemplo, calculemos la probabilidad de obtener 4 piezas sin defecto antes de obtener una pieza defectuosa, siendo la probabilidad de obtener una pieza defectuosa 0.1 y suponiendo independencia entre las piezas:

$$P[X=4]=P[XXXX0]=0.1 \times 0.1 \times 0.1 \times 0.1 \times 0.9=0.1^4 \times 0.9$$

Hay que observar que la variable correspondiente a la distribución geométrica es discreta, a partir de 0, y que puede tomar valores hasta el infinito.

Como puede observarse en la función de cuantía, para obtener una probabilidad de una valor es suficiente conocer el valor de un parámetro , de modo que abreviadamente podemos referirnos a la distribución geométrica de forma abreviada de esta forma:

$$X \sim G(p)$$

Por otra parte, la distribución geométrica o de Pascal es un caso particular de la distribución binomial negativa que proporciona la probabilidad de un número de fracasos antes del éxito r-ésimo:

$$X \sim G(p) \equiv BN(r=1,p)$$

De hecho, la distribución binomial negativa es la suma de r distribuciones geométricas.

La media y la varianza de la distribución geométrica son las siguientes:

$$X \sim G(p) :\  \mu=\cfrac{q}{p}\ ; \  \sigma^2=\cfrac{q}{p^2}$$

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Distribución geométrica" (en línea)   Enlace al artículo
Última actualización: 26/12/2024

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Distribución normal tipificada (estandarizada)

En estadística, la distribución normal tipificada o distribución normal estandarizada es aquella variable con una distribución normal general a la que se ha aplicado un proceso de tipificación o estandarización, de modo que se ha convertido en una distribución normal estándar. El proceso de tipific...

Distribución exponencial

Imagen: Funciones de densidad de la distribucion exponencial para diferentes valores del parámetro lambda. Como puede observarse, según aumenta lambda (número de ocurrencias medio) la probabilidad de tiempos pequeños entre ocurrencias es mayor, como es lógico. Créditos:Newystats-Commons. La distr...

Diferencia simétrica de sucesos

Imagen: Diferencia de dos sucesos (en rojo) representada en un diagrama de Venn. En teoría de probabilidades, la diferencia simétrica de sucesos es una operación con sucesos que tiene como resultado el suceso correspondiente a que ocurra uno y solo uno de los sucesos considerados, es decir, ...

Regla de la adición de probabilidades

La regla de la adición de probabilidades o regla de la suma de probabilidades es una regla para el cálculo de probabilidades de una unión de sucesos aleatorios, esto es, la probabilidad de que ocurra cualquiera de ellos o varios a la vez, que se aplica únicamente cuando los sucesos incluidos en la u...