Distribución geométrica

La distribución geométrica es la distribución de probabilidad del número de fracasos obtenidos hasta conseguir el primer éxito en un proceso de Bernoulli. La función de cuantía de la distribución, que proporciona la probabilidad antes mencionada, es la siguiente, siendo p la probabilidad de éxito en cada experimento y (1-p) la probabilidad de fracaso:

$$P[X=x]=(1-p)^x \cdot p\ ; \ x=0,1,2,...$$

Por ejemplo, calculemos la probabilidad de obtener 4 piezas sin defecto antes de obtener una pieza defectuosa, siendo la probabilidad de obtener una pieza defectuosa 0.1 y suponiendo independencia entre las piezas:

$$P[X=4]=P[XXXX0]=0.1 \times 0.1 \times 0.1 \times 0.1 \times 0.9=0.1^4 \times 0.9$$

Hay que observar que la variable correspondiente a la distribución geométrica es discreta, a partir de 0, y que puede tomar valores hasta el infinito.

Como puede observarse en la función de cuantía, para obtener una probabilidad de una valor es suficiente conocer el valor de un parámetro , de modo que abreviadamente podemos referirnos a la distribución geométrica de forma abreviada de esta forma:

$$X \sim G(p)$$

Por otra parte, la distribución geométrica o de Pascal es un caso particular de la distribución binomial negativa que proporciona la probabilidad de un número de fracasos antes del éxito r-ésimo:

$$X \sim G(p) \equiv BN(r=1,p)$$

De hecho, la distribución binomial negativa es la suma de r distribuciones geométricas.

La media y la varianza de la distribución geométrica son las siguientes:

$$X \sim G(p) :\  \mu=\cfrac{q}{p}\ ; \  \sigma^2=\cfrac{q}{p^2}$$

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Distribución geométrica" (en línea)   Enlace al artículo
Última actualización: 26/12/2024

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Sucesos independientes (independencia de sucesos)

Dos sucesos aleatorios son independientes entre sí cuando la ocurrencia de cualquiera de ellos no proporciona ninguna información relevante o adicional sobre la ocurrencia de otro, de modo que ocurrido uno, la probabilidad del otro no se modifica; dicho de otra forma, cuando la probabilidad de cada ...

Espacio muestral

Espacio muestral es el conjunto de los sucesos elementales o resultados simples asociados a la realización de un experimento aleatorio. Por ejemplo, lanzando un dado de seis caras, el espacio muestral asociado al resultado viene dado por la siguiente expresión:  $$\Omega=\{1,2,3,4,5,6\}$$ Los...

Álgebra de sucesos (estructura algebraica)

Un álgebra de sucesos es un conjunto de sucesos aleatorios o subconjuntos de un espacio muestral cerrado bajo las operaciones de unión finita y complementación de sucesos. Puede demostrarse que dichas condiciones de estructura implican también que el conjunto sea cerrado para operaciones de intersec...

Desigualdad de Chebychev

La desigualdad de Bienaymé-Chebychev, comúnmente denominada sin más desigualdad de Chebychev, desigualdad de Tchebychev o desigualdad de Chebyshev, es una fórmula que proporciona una cota máxima para la probabilidad de que el valor de una variable aleatoria se sitúe mas allá de una distancia dada a ...