Distribución geométrica

La distribución geométrica es la distribución de probabilidad del número de fracasos obtenidos hasta conseguir el primer éxito en un proceso de Bernoulli. La función de cuantía de la distribución, que proporciona la probabilidad antes mencionada, es la siguiente, siendo p la probabilidad de éxito en cada experimento y (1-p) la probabilidad de fracaso:

$$P[X=x]=(1-p)^x \cdot p\ ; \ x=0,1,2,...$$

Por ejemplo, calculemos la probabilidad de obtener 4 piezas sin defecto antes de obtener una pieza defectuosa, siendo la probabilidad de obtener una pieza defectuosa 0.1 y suponiendo independencia entre las piezas:

$$P[X=4]=P[XXXX0]=0.1 \times 0.1 \times 0.1 \times 0.1 \times 0.9=0.1^4 \times 0.9$$

Hay que observar que la variable correspondiente a la distribución geométrica es discreta, a partir de 0, y que puede tomar valores hasta el infinito.

Como puede observarse en la función de cuantía, para obtener una probabilidad de una valor es suficiente conocer el valor de un parámetro , de modo que abreviadamente podemos referirnos a la distribución geométrica de forma abreviada de esta forma:

$$X \sim G(p)$$

Por otra parte, la distribución geométrica o de Pascal es un caso particular de la distribución binomial negativa que proporciona la probabilidad de un número de fracasos antes del éxito r-ésimo:

$$X \sim G(p) \equiv BN(r=1,p)$$

De hecho, la distribución binomial negativa es la suma de r distribuciones geométricas.

La media y la varianza de la distribución geométrica son las siguientes:

$$X \sim G(p) :\  \mu=\cfrac{q}{p}\ ; \  \sigma^2=\cfrac{q}{p^2}$$

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Distribución geométrica" (en línea)   Enlace al artículo
Última actualización: 26/12/2024

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Distribución normal estándar

La distribución normal estándar, distribución normal reducida o distribución normal unitaria es aquella distribución normal que tiene como media 0 y desviación típica 1. Se representa de la siguiente de la forma: $$Z \sim N(\mu=0,\sigma=1)$$ Su función de densidad viene dada de esta forma:  ...

Suceso seguro

En teoría de probabilidades, un suceso seguro, suceso cierto o suceso universal es aquel que ocurre en todo caso, para cualquier resultado del experimento aleatorio en cuestión, de forma que en forma de conjunto engloba a todos los resultados posibles o sucesos elementales, de forma que coincide con...

Distribución normal tipificada (estandarizada)

En estadística, la distribución normal tipificada o distribución normal estandarizada es aquella variable con una distribución normal general a la que se ha aplicado un proceso de tipificación o estandarización, de modo que se ha convertido en una distribución normal estándar. El proceso de tipific...

Sucesos aleatorios (eventos aleatorios)

Un suceso aleatorio  o evento aleatorio es cualquier resultado o conjunto de resultados de un experimento aleatorio para el que se puede establecer o  calcular una probabilidad. Son ejemplos de sucesos aleatorios, por ejemplo, al lanzar un dado, obtener la puntuación de 1, u obtener una pu...