Distribución binomial negativa (distribución de Pascal)

La distribución binomial negativa o distribución de Pascal (Blaise Pascal, 1623-1662) es la distribución de probabilidad que representa, en una secuencia independiente de eventos binarios, denominados éxito y fracaso con probabilidades respectivas p y q=1-p, el número de fracasos hasta el acaecimiento del éxito r-ésimo (consulta: proceso de Bernoulli). Su función de probabilidad es la siguiente: 

$$P[X=x]=q^x \times p^{r-1} \times \cfrac{(n+(r-1)!}{n! (r-1)!} \times p\ ; \ X]x=0,1,2,\ldots$$

Se representa de forma abreviada de la siguiente forma, concretando los parámetros r y p:

$$X \sim BN(r,p)$$

La distribución geométrica es un caso especial de la distribución binomial negativa, con r=1. Por otro lado, la distribución binomial negativa es la suma de r distribuciones geométricas.

Como ejemplo, ¿cuál es la probabilidad de obtener 6 piezas sin defectos hasta obtener 4 piezas defectuosas, siendo la probabilidad de una pieza defectuosa 0.1?

$$P[X=x]=0.9^6 \times 0.1^3 \times \cfrac{9!}{9!3!} \times 0.1$$

La esperanza y la varianza de la distribución binomial negativa son las siguientes, fácilmente deducibles del hecho de que la suma de r distribuciones geométricas da lugar a una distribución binomial negativa:

$$E[X]=\cfrac{rq}{p}\ ; \ var[X]=\cfrac{rq}{p^2}$$

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Distribución binomial negativa (distribución de Pascal)" (en línea)   Enlace al artículo
Última actualización: 26/12/2024

¿Cuál es la relación entre la distribución binomial negativa y la distribución geométrica?

Juana

La respuesta es que la distribución geométrica es un caso especial de la distribución binomial negativa, con r=1. Por otro lado, la distribución binomial negativa es la suma de r distribuciones geométricas.

¿Cómo se puede calcular la probabilidad de obtener x fracasos hasta el éxito r-ésimo en una secuencia independiente de eventos binarios?

Alejandro

La respuesta es mediante la fórmula P[X=x]=q^x \times p^{r-1} \times \cfrac{(n+(r-1)!}{n! (r-1)!} \times p

¿Cuál es el significado del parámetro r en la distribución binomial negativa?

Leire

El parámetro r representa el número de fracasos hasta el acaecimiento del éxito r-ésimo.

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Sucesos aleatorios (eventos aleatorios)

Un suceso aleatorio  o evento aleatorio es cualquier resultado o conjunto de resultados de un experimento aleatorio para el que se puede establecer o  calcular una probabilidad. Son ejemplos de sucesos aleatorios, por ejemplo, al lanzar un dado, obtener la puntuación de 1, u obtener una pu...

Sucesos elementales (sucesos simples)

Un suceso elemental, suceso simple o suceso atómico es un suceso aleatorio que coincide con cada uno de los resultados posibles de un experimento aleatorio; en otras palabras, es cada uno de los elementos del conjunto denominado espacio muestral. La combinación de varios sucesos elementales, a ...

Distribución binomial

La distribución binomial es la distribución de probabilidad correspondiente al número de éxitos en un proceso de Bernoulli, donde cada experimento aleatorio tiene dos resultados posibles, éxito y fracaso, con  una probabilidad  éxito p. La función de probabilidad de la distribución binomia...

Teorema de De Moivre-Laplace

El teorema de De Moivre-Laplace (Abraham De Moivre, 1667-1754;  Pierre-Simon de Laplace, 1749-1827) es un teorema que establece que una distribución binomial se aproxima a una distribución normal, cuando el parámetro \(n\) de la distribución binomial es grande (generalmente puede establecerse c...