Distribución exponencial

Exponential_probability_density.png

Imagen: Funciones de densidad de la distribucion exponencial para diferentes valores del parámetro lambda. Como puede observarse, según aumenta lambda (número de ocurrencias medio) la probabilidad de tiempos pequeños entre ocurrencias es mayor, como es lógico. Créditos:Newystats-Commons.

La distribución exponencial es la distribución de probabilidad del tiempo o, más generalmente, distancia entre dos sucesos consecutivos en un proceso de Poisson. Se utiliza generalmente como distribución del tiempo entre llegadas u ocurrencias cuando estas ocurren de forma aleatoria a lo largo del tiempo, a una tasa dada por unidad de tiempo. Más concretamente, siendo \(\lambda\) (lambda) la tasa media de ocurrencia media de los sucesos aleatorios, la función de densidad de la distribución exponencial es la siguiente:

$$f(x)=\lambda e^{-\lambda x}\ ; \ x>0$$

Como puede observarse, la variable con distribución exponencial toma únicamente valores positivos, siendo esto coherente con su cosideración como tiempo entre sucesos consecutivos. 

El cálculo de probabilidades es más cómodo a través de la función de distribución:

$$F(x)=P[X<x]=1-e^{-\lambda x}\ ; \ x \geq 0$$

Su esperanza y varianza son las siguientes:

$$E[X]=\cfrac{1}{x}\ \ ; \ \ var[X]=\cfrac{1}{\lambda^2}$$

Ejemplo

Las llegadas de clientes a un servicio son aleatorias e independientes entre sí a una tasa de 2 clientes por minuto. Vamos a calcular la probabilidad de que entre dos clientes consecutivos transcurran menos de 4 minutos:

$$\lambda_{1min}=2$$

$$P[X<4min]=F(x=4)=1-e^{-2 \times 4}=1-e^{-8}$$

Debe recordarse a la hora de calcular probabilidades que el intervalo de tiempo al que se refiere el parámetro lambda debe coincidir con la unidad de tiempo considerada en el cálculo de probabilidades; así, en el ejemplo anterior, si lambda es por minuto, la unidad de tiempo utilizada en la fórmula debe ser el minuto. 

Finalmente vamos a calcular la esperanza o media de la distribución:

$$\mu=E[X]=\cfrac{1}{2}=0.5min$$

El resultado es intuitivo: si llegan 2 clientes por minuto en promedio, el promedio de tiempo entre clientes consecutivos será de 0.5min. 



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Distribución exponencial" (en línea)   Enlace al artículo
Última actualización: 17/11/2024

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Límites de confianza

En estadística, los límites de confianza son los valores míninos y máximos que se establecen para un parámetro desconocido con un nivel de confianza determinado, que suele ser del 90, 95 o 99%. Generalmente, los límites de confianza se establecen restando, para conseguir el valor mínimo, y sumando, ...

Distribución muestral de un estimador

La distribución muestral de un estimador, también llamada distribución de muestreo o distribución en el muestreo de un estimador o estadístico, es la distribución de probabilidad de los valores que puede tomar un estimador concreto en el caso de que se tome una muestra aleatoria.  Cuando se to...

Nivel de confianza

En relación a los intervalos de confianza con una amplitud determinada que pueden resultar respecto a un parámetro, el nivel de confianza es el porcentaje de veces que el parámetro a estimar se encontrará dentro de ese grupo de intervalos; por lo tanto, el nivel de confianza expresa la verosimilitud...

Sesgo de selección

El sesgo de selección consiste en la incorrección y error que se produce al seleccionar una muestra de forma no aleatoria, de modo que unos colectivos dentro de la población en estudio están sobrerrepresentados, dando como resultado una muestra no representativa del conjunto de la población. Un ejem...