Distribución exponencial

Exponential_probability_density.png

Imagen: Funciones de densidad de la distribucion exponencial para diferentes valores del parámetro lambda. Como puede observarse, según aumenta lambda (número de ocurrencias medio) la probabilidad de tiempos pequeños entre ocurrencias es mayor, como es lógico. Créditos:Newystats-Commons.

La distribución exponencial es la distribución de probabilidad del tiempo o, más generalmente, distancia entre dos sucesos consecutivos en un proceso de Poisson. Se utiliza generalmente como distribución del tiempo entre llegadas u ocurrencias cuando estas ocurren de forma aleatoria a lo largo del tiempo, a una tasa dada por unidad de tiempo. Más concretamente, siendo \(\lambda\) (lambda) la tasa media de ocurrencia media de los sucesos aleatorios, la función de densidad de la distribución exponencial es la siguiente:

$$f(x)=\lambda e^{-\lambda x}\ ; \ x>0$$

Como puede observarse, la variable con distribución exponencial toma únicamente valores positivos, siendo esto coherente con su cosideración como tiempo entre sucesos consecutivos. 

El cálculo de probabilidades es más cómodo a través de la función de distribución:

$$F(x)=P[X<x]=1-e^{-\lambda x}\ ; \ x \geq 0$$

Su esperanza y varianza son las siguientes:

$$E[X]=\cfrac{1}{x}\ \ ; \ \ var[X]=\cfrac{1}{\lambda^2}$$

Ejemplo

Las llegadas de clientes a un servicio son aleatorias e independientes entre sí a una tasa de 2 clientes por minuto. Vamos a calcular la probabilidad de que entre dos clientes consecutivos transcurran menos de 4 minutos:

$$\lambda_{1min}=2$$

$$P[X<4min]=F(x=4)=1-e^{-2 \times 4}=1-e^{-8}$$

Debe recordarse a la hora de calcular probabilidades que el intervalo de tiempo al que se refiere el parámetro lambda debe coincidir con la unidad de tiempo considerada en el cálculo de probabilidades; así, en el ejemplo anterior, si lambda es por minuto, la unidad de tiempo utilizada en la fórmula debe ser el minuto. 

Finalmente vamos a calcular la esperanza o media de la distribución:

$$\mu=E[X]=\cfrac{1}{2}=0.5min$$

El resultado es intuitivo: si llegan 2 clientes por minuto en promedio, el promedio de tiempo entre clientes consecutivos será de 0.5min. 



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Distribución exponencial" (en línea)   Enlace al artículo
Última actualización: 26/12/2024

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Distribución de Bernoulli

La distribución de Bernoulli o distribución dicotómica es la distribución de probabilidad asociada a un experimento de Bernoulli en el que se asigna a los resultados éxito y fracaso los valores de 1 y  0 con probabilidades respectivas p y q=1-p, considerando como éxito que el suceso de interés ...

Álgebra de sucesos (estructura algebraica)

Un álgebra de sucesos es un conjunto de sucesos aleatorios o subconjuntos de un espacio muestral cerrado bajo las operaciones de unión finita y complementación de sucesos. Puede demostrarse que dichas condiciones de estructura implican también que el conjunto sea cerrado para operaciones de intersec...

Sucesos compuestos

En teoria de probabilidades, un suceso compuesto es un suceso o evento aleatorio que está formado por la unión de varios resultados o sucesos elementales de un experimento aleatorio. Por ejemplo, el resultado "obtener puntuación par tras lanzar un dado" es un suceso compuesto formado por los sucesos...

Diferencia simétrica de sucesos

Imagen: Diferencia de dos sucesos (en rojo) representada en un diagrama de Venn. En teoría de probabilidades, la diferencia simétrica de sucesos es una operación con sucesos que tiene como resultado el suceso correspondiente a que ocurra uno y solo uno de los sucesos considerados, es decir, ...