Distribución exponencial

Exponential_probability_density.png

Imagen: Funciones de densidad de la distribucion exponencial para diferentes valores del parámetro lambda. Como puede observarse, según aumenta lambda (número de ocurrencias medio) la probabilidad de tiempos pequeños entre ocurrencias es mayor, como es lógico. Créditos:Newystats-Commons.

La distribución exponencial es la distribución de probabilidad del tiempo o, más generalmente, distancia entre dos sucesos consecutivos en un proceso de Poisson. Se utiliza generalmente como distribución del tiempo entre llegadas u ocurrencias cuando estas ocurren de forma aleatoria a lo largo del tiempo, a una tasa dada por unidad de tiempo. Más concretamente, siendo \(\lambda\) (lambda) la tasa media de ocurrencia media de los sucesos aleatorios, la función de densidad de la distribución exponencial es la siguiente:

$$f(x)=\lambda e^{-\lambda x}\ ; \ x>0$$

Como puede observarse, la variable con distribución exponencial toma únicamente valores positivos, siendo esto coherente con su cosideración como tiempo entre sucesos consecutivos. 

El cálculo de probabilidades es más cómodo a través de la función de distribución:

$$F(x)=P[X<x]=1-e^{-\lambda x}\ ; \ x \geq 0$$

Su esperanza y varianza son las siguientes:

$$E[X]=\cfrac{1}{x}\ \ ; \ \ var[X]=\cfrac{1}{\lambda^2}$$

Ejemplo

Las llegadas de clientes a un servicio son aleatorias e independientes entre sí a una tasa de 2 clientes por minuto. Vamos a calcular la probabilidad de que entre dos clientes consecutivos transcurran menos de 4 minutos:

$$\lambda_{1min}=2$$

$$P[X<4min]=F(x=4)=1-e^{-2 \times 4}=1-e^{-8}$$

Debe recordarse a la hora de calcular probabilidades que el intervalo de tiempo al que se refiere el parámetro lambda debe coincidir con la unidad de tiempo considerada en el cálculo de probabilidades; así, en el ejemplo anterior, si lambda es por minuto, la unidad de tiempo utilizada en la fórmula debe ser el minuto. 

Finalmente vamos a calcular la esperanza o media de la distribución:

$$\mu=E[X]=\cfrac{1}{2}=0.5min$$

El resultado es intuitivo: si llegan 2 clientes por minuto en promedio, el promedio de tiempo entre clientes consecutivos será de 0.5min. 



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Distribución exponencial" (en línea)   Enlace al artículo
Última actualización: 26/12/2024

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Sucesos incompatibles

Imagen: Los sucesos incompatibles son disjuntos entre sí, es decir, no pueden ocurrir a la vez.  En teoría de probabilidades, se dice que dos o más sucesos o eventos aleatorios son incompatibles, mutuamente excluyentes o disjuntos entre sí cuando no pueden ocurrir al mismo tiempo o, más exac...

Suceso seguro

En teoría de probabilidades, un suceso seguro, suceso cierto o suceso universal es aquel que ocurre en todo caso, para cualquier resultado del experimento aleatorio en cuestión, de forma que en forma de conjunto engloba a todos los resultados posibles o sucesos elementales, de forma que coincide con...

Espacio muestral

Espacio muestral es el conjunto de los sucesos elementales o resultados simples asociados a la realización de un experimento aleatorio. Por ejemplo, lanzando un dado de seis caras, el espacio muestral asociado al resultado viene dado por la siguiente expresión:  $$\Omega=\{1,2,3,4,5,6\}$$ Los...

Distribución normal

Imagen: Una distribución normal ajustada a un histograma de datos.  La distribución normal o distribución gaussiana, también llamada curva de distribución normal o curva normal, es una distribución de probabilidad frecuentemente utilizada en estadística, con forma de campana - de hecho, se l...