Distribución binomial

La distribución binomial es la distribución de probabilidad correspondiente al número de éxitos en un proceso de Bernoulli, donde cada experimento aleatorio tiene dos resultados posibles, éxito y fracaso, con  una probabilidad  éxito p. La función de probabilidad de la distribución binomial es la siguiente:

$$P[X=x]=p^x \times (1-p)^{n-x} \times \cfrac{n!}{x!(n-x)!}\  \ ; \ x=1,2,...,n$$

La anterior fórmula se explica de esta forma: los éxitos, con probabilidad p cada uno de ellos, ocurren x veces, los fracasos (n-x) veces, y todos ellos en cualquier orden, concretándose este último factor en la fórmula final de las permutaciones con repetición.

La probabilidad de fracaso, esto es (1-p), se suele expresar también con la letra 1, cumpliéndose p+q=1.

Dado que la distribución tiene dos parámetros, concretamente n y p, la distribución binomial se específica de forma resumida a través de esta notación:

$$ X \sim B(n,p)$$

Su esperanza y varianza son la siguientes:

$$E[X]=np\ \ ; \ \sigma^2=npq$$

Relación con la distribución de Bernoulli

Una distribución binomial B(n,p) es la suma de n distribuciones de Bernoulli b(p). En efecto, si se suman los valores 1, éxito, y 0, fracaso, de las distribuciones de Bernoulli, el resultado es el número de éxitos correspondiente en la distribución binomial.

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Distribución binomial" (en línea)   Enlace al artículo
Última actualización: 28/02/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Distribución de Bernoulli

La distribución de Bernoulli o distribución dicotómica es la distribución de probabilidad asociada a un experimento de Bernoulli en el que se asigna a los resultados éxito y fracaso los valores de 1 y  0 con probabilidades respectivas p y q=1-p, considerando como éxito que el suceso de interés ...

Fenómenos aleatorios

Imagen: El resultado cara o cruz al lanzar una moneda es un fenómeno aleatorio.  Los fenómenos aleatorios son aquellos fenómenos que repetidos en la mismas condiciones controlables muestran variabilidad, esto es, presentan diferentes resultados; por ejemplo, el lanzamiento de una moneda al a...

Sucesos independientes (independencia de sucesos)

Dos sucesos aleatorios son independientes entre sí cuando la ocurrencia de cualquiera de ellos no proporciona ninguna información relevante o adicional sobre la ocurrencia de otro, de modo que ocurrido uno, la probabilidad del otro no se modifica; dicho de otra forma, cuando la probabilidad de cada ...

Proceso de Bernoulli

Un proceso de Bernoulli o proceso puntual binomial es la sucesión un número determinado, indeterminado o infinito de veces de un mismo experimento de Bernoulli, siendo estos experimentos independientes entre sí. Concretamente, en un proceso de Bernoulli, cada vez se dan dos resultados posible...