Coeficiente de curtosis de Pearson

El coeficiente de curtosis de Pearson es una medida estadística de curtosis desarrollada por Karl Pearson (1857-1936) en 1905, a la vez que el propio concepto de curtosis de una distribución estadística. 

Para una distribución de datos \(x_1,x_2,...,x_n\), esta es la fórmula para su cálculo:

$$K_p=\cfrac{    \cfrac{\sum_i (x_i-\overline{x})^4}{n}                   }{s_x^4}$$

Nota: hemos optado por denominar al coeficiente \(K_p\), aunque también es habitual representarlo con \(g_2\).

Como puede verse, el coeficiente se calcula dividiendo el momento central muestral de orden 4 entre la desviación típica elevada a 4. 

La fórmula pertenece a un conjunto de estadísticos conocidos como momentos estándar, momentos estandarizados o momentos normalizados. Para el caso del coeficiente de curtosis de Pearson, se trata del momento estándar de orden 4. 

El valor del coeficiente se interpreta comúnmente de esta forma, tomando como referencia la distribución normal, que toma siempre un valor de 3 para este coeficiente:

  • un valor del coeficiente significativamente mayor que 3 indica una distribución leptocúrtica, es decir, con un nivel de curtosis superior o más pronunciado que el de la distribución normal;
  • un valor del coeficiente de aproximadamente 3 indica una distribución mesocúrtica, es decir con un mivel medio de curtosis o similar al de la distribución normal
  • un valor del coeficiente significativamente inferior a 3 indica una distribución platicúrtica, es decir con un nivel de curtosis menos pronunciado que el de la distribución normal.
  • un valor del coeficiente significativamente inferior a 1.8 indica es decir con un nivel de curtosis aún menor que el de la distribución uniforme continua, por lo que sería una distribución en forma de U.

Es habitual que en lugar de la anterior fórmula se utilice el denominado exceso de curtosis o coeficiente de curtosis normalizado, que utiliza el valor 0, en lugar de 3, como valor de referencia para establecer si la distribución es leptocúrtica, mesocúrtica o platicúrtica:

$$EK_p=K_p-3$$

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Coeficiente de curtosis de Pearson" (en línea)   Enlace al artículo
Última actualización: 19/01/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Banco de datos

Un banco de datos es una plataforma telemática de acceso, consulta y obtención de datos estadísticos, disponibles generalmente para el público, elaborados por un organísmico de estadística oficial u otra institución de carácter público. ...

Media condicionada

En una distribución conjunta de varias variables estadísitca, una media condicionada es la media que toma los valores de una variable para un valor dado de otra variable. Por ejemplo, si disponemos de los datos de altura y perso para un grupo de personas; una media condicionada seria la media del pe...

Promedio intercuartil

El promedio intercuartil es la media aritmética simple de los datos comprendidos entre el primer y tercer cuartil, esto es, del 50% central de los datos. Se trata por tanto de una media recortada al 50%. Su ventaja como medida de tendencia central es su robustez frente a la presencia de valores atíp...

Variable politómica

Una variable politómica es aquella variable estadística cualitativa que incluye más de dos modalidades o categorías, a diferencia de las variables dicotómicas que únicamente tienen dos categorías. Por ejemplo, son variables politómicas el nivel educativo (primaria/secundaria/bachillerato/universidad...