Coeficiente de curtosis de Pearson

El coeficiente de curtosis de Pearson es una medida estadística de curtosis desarrollada por Karl Pearson (1857-1936) en 1905, a la vez que el propio concepto de curtosis de una distribución estadística. 

Para una distribución de datos \(x_1,x_2,...,x_n\), esta es la fórmula para su cálculo:

$$K_p=\cfrac{    \cfrac{\sum_i (x_i-\overline{x})^4}{n}                   }{s_x^4}$$

Nota: hemos optado por denominar al coeficiente \(K_p\), aunque también es habitual representarlo con \(g_2\).

Como puede verse, el coeficiente se calcula dividiendo el momento central muestral de orden 4 entre la desviación típica elevada a 4. 

La fórmula pertenece a un conjunto de estadísticos conocidos como momentos estándar, momentos estandarizados o momentos normalizados. Para el caso del coeficiente de curtosis de Pearson, se trata del momento estándar de orden 4. 

El valor del coeficiente se interpreta comúnmente de esta forma, tomando como referencia la distribución normal, que toma siempre un valor de 3 para este coeficiente:

  • un valor del coeficiente significativamente mayor que 3 indica una distribución leptocúrtica, es decir, con un nivel de curtosis superior o más pronunciado que el de la distribución normal;
  • un valor del coeficiente de aproximadamente 3 indica una distribución mesocúrtica, es decir con un mivel medio de curtosis o similar al de la distribución normal
  • un valor del coeficiente significativamente inferior a 3 indica una distribución platicúrtica, es decir con un nivel de curtosis menos pronunciado que el de la distribución normal.
  • un valor del coeficiente significativamente inferior a 1.8 indica es decir con un nivel de curtosis aún menor que el de la distribución uniforme continua, por lo que sería una distribución en forma de U.

Es habitual que en lugar de la anterior fórmula se utilice el denominado exceso de curtosis o coeficiente de curtosis normalizado, que utiliza el valor 0, en lugar de 3, como valor de referencia para establecer si la distribución es leptocúrtica, mesocúrtica o platicúrtica:

$$EK_p=K_p-3$$

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Coeficiente de curtosis de Pearson" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Nivel de confianza

En relación a los intervalos de confianza con una amplitud determinada que pueden resultar respecto a un parámetro, el nivel de confianza es el porcentaje de veces que el parámetro a estimar se encontrará dentro de ese grupo de intervalos; por lo tanto, el nivel de confianza expresa la verosimilitud...

Prueba ji-cuadrado (chi-cuadrado) de Pearson

La prueba o contraste ji-cuadrado (tambien denominada chi-cuadrado) de Pearson es un contraste estadístico con diversas aplicaciones (contraste de bondad de ajuste, contraste de independencia, contraste de homogeneidad) que se basa en el estadístico de prueba ji-cuadrado, que calcula la distanc...

Hipótesis nula

En un contraste de hipótesis, la hipótesis nula, denotada por \(H_0\), es la hipótesis estadística que se toma para base la realización del contraste de la muestra con lo afirmado por la hipótesis, de forma que si no existe una discrepancia lo suficientemente grande entre los resultados de la muestr...

Base del índice (periodo base)

A la hora de calcular una serie de números índice, la base del índice o periodo base se refiere al periodo de la serie del que se tomará la magnitud de la variable como valor de referencia o de comparación de la serie completa. En el periodo base, el número índice toma el valor 100. Para que los val...