Coeficiente de curtosis de Pearson

El coeficiente de curtosis de Pearson es una medida estadística de curtosis desarrollada por Karl Pearson (1857-1936) en 1905, a la vez que el propio concepto de curtosis de una distribución estadística. 

Para una distribución de datos \(x_1,x_2,...,x_n\), esta es la fórmula para su cálculo:

$$K_p=\cfrac{    \cfrac{\sum_i (x_i-\overline{x})^4}{n}                   }{s_x^4}$$

Nota: hemos optado por denominar al coeficiente \(K_p\), aunque también es habitual representarlo con \(g_2\).

Como puede verse, el coeficiente se calcula dividiendo el momento central muestral de orden 4 entre la desviación típica elevada a 4. 

La fórmula pertenece a un conjunto de estadísticos conocidos como momentos estándar, momentos estandarizados o momentos normalizados. Para el caso del coeficiente de curtosis de Pearson, se trata del momento estándar de orden 4. 

El valor del coeficiente se interpreta comúnmente de esta forma, tomando como referencia la distribución normal, que toma siempre un valor de 3 para este coeficiente:

  • un valor del coeficiente significativamente mayor que 3 indica una distribución leptocúrtica, es decir, con un nivel de curtosis superior o más pronunciado que el de la distribución normal;
  • un valor del coeficiente de aproximadamente 3 indica una distribución mesocúrtica, es decir con un mivel medio de curtosis o similar al de la distribución normal
  • un valor del coeficiente significativamente inferior a 3 indica una distribución platicúrtica, es decir con un nivel de curtosis menos pronunciado que el de la distribución normal.
  • un valor del coeficiente significativamente inferior a 1.8 indica es decir con un nivel de curtosis aún menor que el de la distribución uniforme continua, por lo que sería una distribución en forma de U.

Es habitual que en lugar de la anterior fórmula se utilice el denominado exceso de curtosis o coeficiente de curtosis normalizado, que utiliza el valor 0, en lugar de 3, como valor de referencia para establecer si la distribución es leptocúrtica, mesocúrtica o platicúrtica:

$$EK_p=K_p-3$$

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Coeficiente de curtosis de Pearson" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Límites reales de clase

En una distribución de datos agrupados en intervalos ,  los límites reales, también llamados límites exactos, de clase o intervalo (en inglés, class boundaries) son los límites precisos del intervalo de clase en el caso de que contáramos con un instrumento de precisión perfecto...

Nube de puntos

Una nube de puntos, el tipo más frecuente de diagrama de dispersión, es la representación en coordenadas cartesianas de los puntos correspondientes a los valores de dos variables cuantitativas continuas. El nombre hace referencia a la nube o cúmulo de puntos que surge como resultado de representar d...

Asociación estadística

La asociación estadística es un término que se refiere en forma genérica a la relación estadística existente entre dos variables estadísticas. Por ejemplo, si la probabilidad de contraer una determinada enfermedad es diferente según el sexo, se dice que existe asociación entre el sexo y dicha probab...

Distribución muestral de un estimador

La distribución muestral de un estimador, también llamada distribución de muestreo o distribución en el muestreo de un estimador o estadístico, es la distribución de probabilidad de los valores que puede tomar un estimador concreto en el caso de que se tome una muestra aleatoria.  Cuando se to...