Coeficiente de curtosis de Pearson

El coeficiente de curtosis de Pearson es una medida estadística de curtosis desarrollada por Karl Pearson (1857-1936) en 1905, a la vez que el propio concepto de curtosis de una distribución estadística. 

Para una distribución de datos \(x_1,x_2,...,x_n\), esta es la fórmula para su cálculo:

$$K_p=\cfrac{    \cfrac{\sum_i (x_i-\overline{x})^4}{n}                   }{s_x^4}$$

Nota: hemos optado por denominar al coeficiente \(K_p\), aunque también es habitual representarlo con \(g_2\).

Como puede verse, el coeficiente se calcula dividiendo el momento central muestral de orden 4 entre la desviación típica elevada a 4. 

La fórmula pertenece a un conjunto de estadísticos conocidos como momentos estándar, momentos estandarizados o momentos normalizados. Para el caso del coeficiente de curtosis de Pearson, se trata del momento estándar de orden 4. 

El valor del coeficiente se interpreta comúnmente de esta forma, tomando como referencia la distribución normal, que toma siempre un valor de 3 para este coeficiente:

  • un valor del coeficiente significativamente mayor que 3 indica una distribución leptocúrtica, es decir, con un nivel de curtosis superior o más pronunciado que el de la distribución normal;
  • un valor del coeficiente de aproximadamente 3 indica una distribución mesocúrtica, es decir con un mivel medio de curtosis o similar al de la distribución normal
  • un valor del coeficiente significativamente inferior a 3 indica una distribución platicúrtica, es decir con un nivel de curtosis menos pronunciado que el de la distribución normal.
  • un valor del coeficiente significativamente inferior a 1.8 indica es decir con un nivel de curtosis aún menor que el de la distribución uniforme continua, por lo que sería una distribución en forma de U.

Es habitual que en lugar de la anterior fórmula se utilice el denominado exceso de curtosis o coeficiente de curtosis normalizado, que utiliza el valor 0, en lugar de 3, como valor de referencia para establecer si la distribución es leptocúrtica, mesocúrtica o platicúrtica:

$$EK_p=K_p-3$$

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Coeficiente de curtosis de Pearson" (en línea)   Enlace al artículo
Última actualización: 16/10/2024

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Datos cualitativos

Los datos cualitativos o datos categóricos son aquellos que expresan una cualidad, propiedad o rasgo de un elemento dentro de un grupo de diferentes modalidades o categorías. Por ejemplo, en referencia al tipo de grado cursado por un alumno, "humanidades" o "sanitario". Su expresión concreta puede s...

Frecuencia relativa

La frecuencia relativa de un valor de la variable estadística es el porcentaje de veces que aparece dicho valor respecto al tamaño de muestra o total de datos en una distribución de frecuencias. Por ejemplo, para la serie de datos A-B-A-C-A-B-A-A-B-C relativos a la asignatura optativa elegida por 10...

Distribución conjunta

En estadística, una distribución conjunta es una distribución de datos o probabilidades que toma en consideración y determina las frecuencias o probabilidades para un conjunto de dos o más variables estadísticas o variables aleatorias. Un ejemplo simple de distribución conjunta viene dado por el lan...

Plano de regresión

En regresión múltiple (varias variables independientes), el plano de regresión es equivalente a la linea de regresión correspondiente a la regresión simple (una única variable independiente). El plano mostrará una pendiente diferente (igual al coeficiente de regresión correspondiente) para cada vari...