Curtosis (estadística)

Kurtosis_no_text.png

Imagen: Diferentes niveles de apuntamiento o curtosis (de mayor a menor curtosis): A leptocútica, B mesocúrtica, C platicúrtica, D uniforme.

La curtosis, a veces también denominada apuntamiento,  es una característica de forma de las distribuciones de datos cuantitativos que establece en que medida los datos se acumulan en los extremos en relación a la acumulación de dichos datos en el centro de la distribución. Frecuentemente, se define la curtosis como medida del carácter apuntado o puntiagudo de la distribución alrededor de la media, aunque son varios los artículos académicos que argumentan contra dicha interpretación; más correctamente, la curtosis se definiría como la proporción entre el número de datos alrededor de la media y la proporción de datos en los extremos, es decir, sería la tendencia de la distribución a mostrar datos atípicos o extremos.

La medida de curtosis más utilizada es el coeficiente de curtosis de Pearson,  cuya fórmula es la siguiente:

$$\beta_2=\cfrac{\cfrac{\sum_i(x_i-\overline{x})^4}{n}}{s_x^4}$$

Esto es, el coeficiente se calcula dividiendo el cuarto momento central entre la desviación típica elevada a 4. 

El coeficiente proporciona un valor que se compara con el valor que toma el coeficiente para la distribución normal, que es siempre constante cualesquiera sean sus parámetros:

 De este modo, se distinguen distribuciones mesocúrticas (con curtosis similares a la distribución normal), platicúrticas (menor curtosis que la distribución normal) y leptocúrticas (mayor curtosis que la distribución normal). Así, el coeficiente de curtosis de Pearson se utiliza especialmente para probar o contrastar si el conjunto de datos proviene de una distribución normal, siempre que además la distribución sea simétrica, ya que la distribución normal tiene un nivel de curtosis exacto y fijo, independientemente de los parámetros que tome. Debe recordarse que la distribución normal es el modelo más utilizado es estadística y por lo tanto habrá que contrastarlo con frecuencia.

Puede interesarte también




Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Curtosis (estadística)" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Separabilidad demográfica

La separabilidad demográfica es la diferencia que se da en una población de referencia respecto de un conjunto de variables. Por ejemplo, si se verifica de forma significativa que hombres y mujeres tienen en promedio diferentes niveles de salario, la separabilidad demográfica es alta, esto es, lo cu...

Error típico (error estándar)

El error típico o error estándar es la desviación típica de la distribución muestral de un estimador, que indica la variabilidad de dicho estimador alrededor de su valor central, coincidiendo este último en el caso de los estimadores insesgados con el parámetro que se desea estimar. El error típico ...

Constante estadística

Una constante estadística es una característica que se observa o mide entre los elementos de una población y que presenta una única modalidad, esto es, es la misma para todos los elementos. Se opone al concepto de variable estadística, como caracterísitcas con modalidades variable entre los elemento...

Histograma

Imagen: Histograma de los pesos en gramos de una muestra de 100 tomates. En el intervalo 200gr-220gr se encuentran 6 tomates. El histograma puede utilizarse para posicionar el centro de la distribución, en este caso alrededor de 260gr aproximadamente, y visualizar la amplitud total de la distribuc...