Curtosis (estadística)

Kurtosis_no_text.png

Imagen: Diferentes niveles de apuntamiento o curtosis (de mayor a menor curtosis): A leptocútica, B mesocúrtica, C platicúrtica, D uniforme.

La curtosis, a veces también denominada apuntamiento,  es una característica de forma de las distribuciones de datos cuantitativos que establece en que medida los datos se acumulan en los extremos en relación a la acumulación de dichos datos en el centro de la distribución. Frecuentemente, se define la curtosis como medida del carácter apuntado o puntiagudo de la distribución alrededor de la media, aunque son varios los artículos académicos que argumentan contra dicha interpretación; más correctamente, la curtosis se definiría como la proporción entre el número de datos alrededor de la media y la proporción de datos en los extremos, es decir, sería la tendencia de la distribución a mostrar datos atípicos o extremos.

La medida de curtosis más utilizada es el coeficiente de curtosis de Pearson,  cuya fórmula es la siguiente:

$$\beta_2=\cfrac{\cfrac{\sum_i(x_i-\overline{x})^4}{n}}{s_x^4}$$

Esto es, el coeficiente se calcula dividiendo el cuarto momento central entre la desviación típica elevada a 4. 

El coeficiente proporciona un valor que se compara con el valor que toma el coeficiente para la distribución normal, que es siempre constante cualesquiera sean sus parámetros:

 De este modo, se distinguen distribuciones mesocúrticas (con curtosis similares a la distribución normal), platicúrticas (menor curtosis que la distribución normal) y leptocúrticas (mayor curtosis que la distribución normal). Así, el coeficiente de curtosis de Pearson se utiliza especialmente para probar o contrastar si el conjunto de datos proviene de una distribución normal, siempre que además la distribución sea simétrica, ya que la distribución normal tiene un nivel de curtosis exacto y fijo, independientemente de los parámetros que tome. Debe recordarse que la distribución normal es el modelo más utilizado es estadística y por lo tanto habrá que contrastarlo con frecuencia.

Puede interesarte también




Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Curtosis (estadística)" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Datos bivariados

Los datos bivariados son un conjunto de datos relativos a dos variables estadísticas, de forma que para cada elemento perteneciente a una muestra estadística se realiza una observación en relación a dos caracterśiticas. Por ejemplo, son datos variados los correspondientes a las alturas y pesos de un...

Datos agregados

Un dato agregado es un dato que agrega o reúne datos de observaciones o mediciones  individuales para todos los elementos de un conjunto o sector, añadiendo o calculando la media de esos datos individuales. Ejemplos de datos agregados son el porcentaje de mujeres en un grupo (ya que hay que rec...

Media aritmética para datos agrupados

La media aritmética para datos agrupados es conceptualmente la misma que la media aritmética para datos no agrupados, pero su cálculo en la práctica a partir de la distribuciones de frecuencias es diferente (consulta, además, datos agrupados). Veamos un ejemplo: Las calificaciones obtenidas por un ...

Tablero de Galton

Imagen: El tablero de Galton, tal fue diseñado por el propio Francis Galton.  El tablero de Galton o máquina de Galton (Francis Galton, hombre de ciencia inglés, 1822-1911), también conocido como quincunx, es un artefacto que simula de forma visual  la generación de la curva de la distr...