Coeficiente de asimetría de Fisher

fisher_alborapena.pngEl coeficiente de asimetría de Fisher es una medida estadística de asimetría de una distribución estadística que establece hasta que punto esta es simétrica o asimétrica y en qué dirección, a la izquierda o a la derecha. Puede calcularse tanto para distribuciones de datos como para una distribución de probabilidad. 

Para una muestra o conjunto de datos se calcula desarrollando esta fórmula: 

$$A_F=\cfrac{m_3}{s_x^3}=\cfrac{\cfrac{\sum_i(x_i-\overline{x})^3}{n}}{s_x^3}$$

siendo \(s_x\) la desviación típica o estándar poblacional, aunque también puede sustituirse por la desviación típica muestral o corregida, y \(m_3\) el momento muestral central de orden 3 o tercer momento central. La expresión del numerador coincide con el momento muestral de tercer orden respecto de la media. La fórmula completa coincide, por otra parte, con el momento estándar de orden 3. 

Este coeficiente se interpreta de la siguiente forma:

  • si el coeficiente toma valores cerca de 0, se deduce que la distribución es simétrica o presenta un alto grado de simetría, si bien la cercanía a 0 debería evaluarse a través de una prueba de hipótesis;
  • si el coeficiente toma un valor positivo relativamente lejano de 0, la distribución estadística es asimétrica a la derecha (se dice también que presenta una asimetría positiva);
  • si el coeficiente toma un valor negativo relativamente lejano de 0, la distribución estadística es asimétrica a la izquierda (se dice también que presenta una asimetría negativa).

Ejemplo

Se ha preguntado por el número de asignaturas pendientes de cursos anteriores a una muestra de alumnos universitarios obteniendo las siguientes respuestas: 1-2-2-2-2-3-3-4-5-6. A continuación se desarrolla el cálculo del coeficiente de asimetría de Fisher:

 
\(x_i\)
\((x_i-\overline{x})^2\)
\((x_i-\overline{x})^3\)
1 4
-8
2
1
-1
2
1
-1
2
1

-1

2
1
-1
3
0
0
3
0
0
4
1
1
5
4
8
6
9
27
Suma=30
Suma=22
Suma=24

Calculamos la media aritmética simple:

$$\overline{x}=\cfrac{\sum x_i}{n}=\cfrac{30}{10}=3$$

Calculamos la desviación típica poblacional:

$$ s_x=\sqrt{\cfrac{(x_i-\overline{x})^2}{n}}=\sqrt{\cfrac{22}{10}}=1.483$$

Calculamos el momento muestral de tercer orden respecto de la media:

$$b_3=\cfrac{(x_i-\overline{x})^3}{n}=\cfrac{24}{10}=2.4$$

Finalmente, calculamos el coeficiente de Fisher:

$$A_F=\cfrac{2.4}{1.483^3}=0.735$$

De esta forma, al ser el coeficiente de Fisher ostensiblemente mayor que 0, puede afirmarse que la distribución presenta asimetría positiva o  es asimétrica a la derecha. 

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Coeficiente de asimetría de Fisher" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Puntaje

Puntaje (utilizado especialmente en Latinoamérica) es el número de puntos obtenido por un sujeto u otro elemento en una prueba debidamente estructurada. En España se utiliza con preferencia el término puntuación....

Elemento (estadística)

En estadística, un elemento es cada una de las unidades que conforma una población estadística. Por ejemplo, si la población que se va estudiar está formada por todas las familias de un país, los elementos son las familias que conforman dicha población. Como concepto sinónimo puedes consultar In...

Tanto por mil

Tanto por mil, tanto por millar o pormilaje es una magnitud o cantidad relativa o promedio de elementos o casos considerados,  respecto de un número total de mil. Por  ejemplo, si se dice que las unidades defectuosas son 4 por mil, quiere decir que en promedio cada 1000 unidades habrá 4 un...

Tablero de Galton

Imagen: El tablero de Galton, tal fue diseñado por el propio Francis Galton.  El tablero de Galton o máquina de Galton (Francis Galton, hombre de ciencia inglés, 1822-1911), también conocido como quincunx, es un artefacto que simula de forma visual  la generación de la curva de la distr...