Desviación típica (desviación estándar)

La desviación típica o desviación estándar es una medida de dispersión absoluta que mide la media de desviación de cada valor de la variable estadística respecto a la media aritmética simple o esperanza matemática. Es la medida de dispersión  más utilizada en la práctica, y en muchos modelos estadísticos es un parámetro básico que define la distribución, por ejemplo en la distribución normal. Asimismo, es un dato fundamental en un gran número de métodos estadísticos. Puede calcularse para distribuciones de datos como para distribuciones de probabilidad. La desviación típica elevada al cuadrado es la varianza. Su valor siempre es positivo o 0, cuianto mayor es su valor la dispersión se considera que es mayor, aunque no existe un valor a partir del cual pueda afirmarse que la dispersión es grande o pequeña, al ser una caracterísitca relativa, y su resultado viene dado en las misma unidad de la variable a la que se refiere.

Desviación típica para distribuciones de datos

Para una serie de datos \(x_1,x_2,...,x_n\) la desviación típica, representada por \(s_x\) se calcula de acuerdo a la siguiente fórmula:

$$s_x=\sqrt{\cfrac{\sum(x_i-\overline{x})^2}{n}}=\sqrt{\cfrac{\sum x_i^2}{n}-\overline{x}^2}$$

En la fórmula anterior aparecen dos expresiones equivalentes, que proporcionan el mismo resultado: la primera corresponde a la fórmula original de la desviación típica, como media cuadrática de las desviaciones de cada dato respecto a la media; desarrollando esa expresión se llega a la segunda versión de la fórmula que permite el cálculo de la desviación típica de forma más simple y rápida. 

Ejemplo

Las calificaciones de un grupo de alumnos en una asginatura son las siguientes: 1-3-5-7 (puntos). Para calcular la desviación típica según la fórmula original el primer paso es siempre calcular la media aritmética simple, para lo cual hay sumar los datos (columna 1):

$$\overline{x}=\cfrac{\sum x_i}{n}=\cfrac{20}{5}=4$$

 A continuación hay que calcular las desviaciones de cada dato a la media, cuya suma siempre es 0 (columna 2) ya que se compensan las desviaciones negativas con las positivas. Para evitar esto, calculamos la media cuadrática de dichas desviaciones, es decir, la desviación típica, tomando para ello la suma de las desviaciones al cuadrado (columna 3):

 
\(x_i\)
\((x_i-\overline{x})\)
\((x_i-\overline{x})^2\)
1 -3 9
3 -1 1
5 1
1
7 3 9
4 0 0
Suma=20
Suma=0
Suma=20

$$ s_x=\sqrt{\cfrac{(x_i-\overline{x})^2}{n}}=\sqrt{\cfrac{20}{5}}=2pt.$$

Es decir, cada alumno se desvía en promedio de la media aritmética simple 2 puntos.

El cálculo a través de la segunda versión de la fórmula es más rápido:

 
\(x_i\)
\(x_i^2\)
1 1
3 9
5 25
7 49
4 16
Suma=20
Suma=100

$$s_x=\sqrt{\cfrac{\sum x_i^2}{n}-\overline{x}^2}=\cfrac{100}{5}-4^2=2pt.$$

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Desviación típica (desviación estándar)" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Variables latentes (variables ocultas)

Las variables latentes, denominadas también variables ocultas, son variables no observables directamente, pero estimadas mediante otras variables observables dentro de un modelo estadístico. Un ejemplo de variable oculta es la ansiedad de un sujeto en un determinado momento, que está relacionada en ...

Intervalo de clase

Imagen: Tras recoger las alturas de 50 jóvenes, estas se han agrupado en los intervalos de clase 160-165 (4 chicos), 165-170 (23 chicos), 170-175 (16 chicos), 175-180 (7 chicos), con el objetivo de representar mejor su distribución, dado que la lista de datos sin agrupar mostraría una serie d...

Deciles

Imagen: En el eje horizontal, las barras azules delimitan los deciles en la distribución normal que se muestra. Como puede observarse, cuando la densidad de probabilidad es menor, hacia los extremos, hay que hacer un mayor recorrido para formar el 10% de probabilidad que nos lleve al siguiente dec...

Error de muestreo (error muestral)

En estadística, el error de muestreo o error muestral hace referencia al error que se comete al realizar una estimación sobre una característica de una población basándose en los datos obtenidos a partir de una muestra aleatoria, en lugar de realizar un censo. El error de muestreo es de naturaleza c...