Coeficiente de asimetría de Bowley

distribucion_ligeramente_asimetrica.png

Imagen: En la distribución con asimetría positiva o asimétrica a la derecha cuya curva de frecuencias se muestra, la distancia entre el tercer y segundo cuartil es mayor que la distancia entre el segundo y primer cuartil, de modo que el coeficiente de asimetría de Bowley resultará con valor positivo. 

El coeficiente de asimetría de Bowley (Arthur Lyon Bowley, economista y estadístico inglés, 1869 – 1957), a veces también llamado coeficiente de asimetría de Yule-Bowley o índice de asimetría intercuartílico, es una medida de asimetría de una variable estadística unidimensional, que se basa en la diferencia relativa entre recorridos tercer cuartil-segundo cuartil (\(Q_3-Q_2\)) y segundo cuartil-primer cuartil (\(Q_2-Q_1\)). La fórmula del coeficiente es la siguiente (consúltese, además, cuartiles):

$$A_B=\cfrac{(Q_3-Q_2)-(Q_2-Q_1)}{Q_3-Q_1}$$

El resultado del coeficiente se interpreta de la siguiente forma:

  • si el coeficiente es positivo, se afirma que la distribución de datos es asimétrica a la derecha o presenta asimetría positiva;
  • si el coefieciente es negativo, se afirma que la distribución de datos es asimétrica a la izquierda o presenta asimetría negativa;
  • si el coeficiente es nulo o aproximadamente nulo, se afirma que la distribución de datos es simétrica o casi simétrica.

Como se deduce de la fórmula, el coeficiente tiene en cuenta únicamente el 50% central de la distribución para la medición de la asimetría, esto es, ignora las colas con un 25% de datos a cada extremo , por lo que puede afirmarse que es una medida robusta frente a la aparición de datos atípicos, aunque como inconveniente no utiliza toda la información contenida en el conjunto de datos al ignorar los datos extremos. 

Una medida similar es el coeficiente de asimetría de Kelly, que sustituye el primer y el tercer cuartil por el primer y el noveno decil, ignorando de esta forma las colas de un tamaño del 10% de la distribución, en lugar del 25% en el caso del coeficiente de Bowley. El coeficiente de asimetría de Kelly se interpreta de la misma forma que el coeficiente de asimetría de Bowley. De forma general, se define el coeficiente de asimetría de Groeneveld-Meeden (1984), del que el coeficiente de Bowley y el coeficiente son casos particulares de esta forma:

$$A_G=\cfrac{(P_{(1-p)}-Me)-(Me-P_p)}{P_{(1-p)}-P_p}$$

donde \(P_p\) y \(P_{(1-p)}\) son los percentiles de orden \(p\), cumpliéndose \(0<p<1/2\). La interpretación de este coeficiente es la misma que la del coeficiente de Bowley.



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Coeficiente de asimetría de Bowley" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Media generalizada

La media generalizada es la expresión general de una familia o conjunto de medias, entre las que se encuentran las medias o promedios más utilizados habitualmente. Se calcula de la siguiente forma, para diferentes valores de un parámetro \(p\): $$MG_p(x_1,\dots,x_n) = \left( \frac{1}{n} \sum_{i=1}^...

Estadística bayesiana (inferencia bayesiana)

La estadística bayesiana y más concretamente la inferencia bayesiana es un conjunto de métodos estadísticos que en base al teorema de Bayes, realiza estimaciones actualizadas de las distribuciones de probabilidad de parámetros desconocidos a partir probabilidades subjetivas iniciales relativas ...

Prueba ji-cuadrado (chi-cuadrado) de Pearson

La prueba o contraste ji-cuadrado (tambien denominada chi-cuadrado) de Pearson es un contraste estadístico con diversas aplicaciones (contraste de bondad de ajuste, contraste de independencia, contraste de homogeneidad) que se basa en el estadístico de prueba ji-cuadrado, que calcula la distanc...

Media cuadrática

La media cuadrática es un promedio utilizado principalmente para situaciones en la que en un mismo conjunto de datos existen datos positivos y negativos. Por ello, es un promedio especialmente adecuado para calcular el valor medio de una serie de errores, que pueden tanto negativos como positivos, p...