Coeficiente de asimetría de Pearson

El coeficiente de asimetría de Pearson (Karl Pearson, 1857-1936) es una medida de asimetría estadística que se basa en la diferencia entre media aritmética, mediana y moda para cuantificar la dirección y el nivel de asimetría de una distribución estadística, normalizando el resultado dividiendo el resultado entre la desviación típica. Generalmente, para variables continuas y una distribución unimodal, en distribuciones asimétricas a la derecha la media aritmética es superior a la mediana y esta, a suvez, superior a la moda y a la inversa en distribuciones asimétricas a la izquierda. 

Existen dos versiones del coeficiente de asimetría de Pearson que comparan respectivamente media y moda por un lado, y media y mediana, por el otro. 

Coeficiente de asimetría de Pearson (versión 1)

$$A_{P1}=\cfrac{\overline{x}-Mo}{s_x}$$

donde \(s_x\) es la desviación típica.

Coeficiente de asimetría de Pearson (versión 2)

$$A_{P2}=\cfrac{3 \times (\overline{x}-Me)}{s_x}$$

Esta última versión que utiliza como referencia la mediana es especialmente útil cuando no es posible el cálculo de la moda; por ejemplo, cuando todos los datos toman valores diferentes en un grupo de datos pequeño.

El coeficiente, en cualquiera de sus dos versiones, se interpreta haciendo uso de la diferencia entre media y moda, y media y mediana, respectivamente, que hemos citado antes, siempre para distribuciones continuas, unimodales y teniendo en cuenta que siempre puede haber distribuciones que no cumplen esta regla:

  • si el valor del coeficiente, para cualquiera de sus dos versiones, es aproximadamente 0, la distribución puede considerarse simétrica o casi simétrica;
  • si el valor del coeficiente es significativamente positivo, la distribución presenta asimetría positiva o a la derecha;
  • si el valor del coeficiente es significativamente negativo, la distribución presenta asimetría negativa o a la izquierda.

Ejemplo 1

Se han recopilado datos sobre el número de asignaturas suspendidas por un grupo de alumnos:

0-0-0-1-1-1-1-1-1-1-1-2-2-2-2-3-3-4-6

Se debe calcular e interpretar el coeficiente de asimetría de Pearson en su versión más adecuada para estos datos

barra_diagrama_dist_asimetrica.pngDado que la moda es única y perfectamente definida se calculará el coeficiente en su primera versión. Para ello determinamos previamente la media aritmética simple, la moda y la desviación típica (de esta última damos únicamente el resultado; para saber como se calcula, haz clic aquí):

$$\overline{x}=\cfrac{0+0+0+1+1+\cdots+4+6}{19}=1.68$$

$$Mo=1 \ \text{(el valor 1 es el más frecuente: se repite 8 de las 19 veces)}$$

$$s_x=1.44$$

Finalmente, calculamos, el coeficiente de asimetría de Pearson con los valores obtenidos:

$$A_{P1}=\cfrac{1.68-1}{1.44}=0.47$$

Al ser el valor positivo, podemos concluir que la distribución es asimétrica a la derecha o tiene asimetría positiva, como puede observarse examinando el diagrama de barras correspondiente a los datos a la derecha. 

Puede interesarte además 



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Coeficiente de asimetría de Pearson" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Muestreo de aceptación

El muestreo de aceptación es el conjunto de técnicas que tiene como objetivo determinar la aceptación o rechazo de un lote de material o de artículos recibidos en una empresa en base a una muestra proveniente del lote, en base a criterios probabilísticos y de coste económico y teniendo en cuenta los...

Elemento (estadística)

En estadística, un elemento es cada una de las unidades que conforma una población estadística. Por ejemplo, si la población que se va estudiar está formada por todas las familias de un país, los elementos son las familias que conforman dicha población. Como concepto sinónimo puedes consultar In...

Variable cardinal

Variable cardinal es un término para denominar a un tipo de variable estadística que mide o cuantifica  una característica con un número. Es sinónimo de variable estadística cuantitativa....

Sesgo de selección

El sesgo de selección consiste en la incorrección y error que se produce al seleccionar una muestra de forma no aleatoria, de modo que unos colectivos dentro de la población en estudio están sobrerrepresentados, dando como resultado una muestra no representativa del conjunto de la población. Un ejem...