Mediana para datos agrupados (cálculo)

El cálculo de la mediana para datos agrupados en intervalos resulta generalmente de una aproximación de su valor dentro del intervalo de clase en la que está contenida (consulta, además, mediana estadística). En efecto, cuando los datos están agrupados, solo podemos establecer con seguridad para la mediana, como valor que deja por debajo suyo al 50% de los datos, en qué intervalo se sitúa, al que llamaremos clase mediana. Como ejemplo, tomemos la siguiente distribución de calificaciones de 50 alumnos:

Edades
Alumnos (n)
Acumulados (N)
5-6
6
6
6-7
10
16
7-8
14
30
8-9
12
42
9-10 
8
50

La mediana es el valor del dato ordenado vigésimoquinto (50/2=25) que, según podemos observar en la tabla de frecuencias acumuladas se encuentra en el intervalo 7-8, ya que por debajo de 7 tenemos a 16 alumnos, y por debajo de 8 a 30. La clase mediana es, pues, 7-8.

A partir de aquí ya no podemos proseguir el cálculo con exactitud ya que no se conoce como se distribuyen los 14 datos de ese intervalo a lo largo del mismo. Si supiésemos con seguridad que todas las notas en ese intervalo son 7.7, no tendríamos ninguna duda, la mediana sería 7.7, pero no es el caso. Solo podemos determinar el valor de la mediana exactamente cuando los datos no están agrupados. 

Sin embargo, podemos calcular una aproximación del valor de la mediana suponiendo que los datos dentro de la clase mediana se distribuyen uniformemente o regularmente a lo largo del intervalo a través del método de interpolación lineal que da como resultado la siguiente fórmula:

$$Me=L_i+\cfrac{\cfrac{N}{2}-F_{i-1}}{f_i} \times a_i$$

donde:

•  \(L_i\) es el límite inferior de la clase mediana;
•  \(f_i\) es la frecuencia absoluta de la clase mediana;
•  \(N\) es el tamaño de muestra o número total de datos;
•  \(a_i\) es la amplitud de la clase mediana;
•  \(F_{i-1}\) es la frecuencia absoluta acumulada del intervalo anterior a la clase mediana.

Aplicando dicha fórmula al ejemplo anterior, obtenemos el siguiente cálculo aproximado de la mediana, suponiendo siempre que los datos se distribuyen uniformemente a lo largo del intervalo:

$$Me=7+\cfrac{\cfrac{50}{2}-16}{14} \times 1=7.64$$



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Mediana para datos agrupados (cálculo)" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Factores de predisposición

Los factores de predisposición son aquellos factores de riesgo o causas componentes que incrementan la probabilidad de sufrir una enfermedad o patología, es decir, aumentan la susceptibilidad del sujeto, pero sin constituir una causa directa o indirecta de la aparición de la enfermedad.  Puede...

Variable respuesta

En un diseño experimental, la variable respuesta es la que se observa y mide con el objetivo de analizar como dicha variable es influenciada por los tratamientos bajo control. Por ejemplo, a la hora de examinar la eficacia de un medicamento, el tratamiento es la administración del medicamento, mient...

Frecuencia acumulada absoluta

Para una variable estadística cuantitativa, la frecuencia acumulada absoluta es el número de elementos de la muestra inferior o igual a un valor dado de la variable. Por ejemplo, para datos de calificaciones de alumnos entre 0 y 10, la frecuencia absoluta acumulada de 7 indica el número de alumnos c...

Cálculo de la moda estadística para datos agrupados en intervalos

En el documento adjunto, se explica el cálculo aproximado de la moda estadística para una distribución de datos agrupada en intervalos. Puede visualizar y descargar el documento aquí, en formato PDF....