Mediana estadística

mediana_histograma.png

Imagen: La mediana se muestra en el histograma como el valor que separa el 50% de los datos a cada lado, mostrando de este modo el "centro" de la distribución que puede tomarse como medida representativa del conjunto de datos. 

En estadística, la mediana (Me) es el valor de la variable que separa a la mitad inferior de los datos ordenados de la muestra de su mitad superior. Se utiliza como medida de tendencia central para una variable cuantitativa u ordinal y por tanto su valor uede tomarse como representativo del conjunto de los datos. Frente a otras medidas de tendencia central, especialmente la media aritmética simple, presenta la ventaja de que no se ve afectada por los extremos de la distribución y valores atípicos; así, por ejemplo, la mediana de la renta se utiliza frecuentemente en lugar de la renta media, ya que esta última sobrestima el valor medio de las rentas al incluir las rentas muy altas que arrastran hacia arriba su valor. De esta forma, la mediana es un estadístico robusto frente a distribuciones muy asimétricas, con extremos muy largos, y valores atípicos. 

Para calcular la mediana, en primer lugar deben ordenarse los datos de menor y mayor, para a continuación tomar como mediana el dato que se encuentra en el medio de la lista ordenada. Cuando el número de datos es par, surge el problema de determinar cuál es el valor en el medio de la lista o distribución de datos. La solución más frecuente es esta:

  • Si el número de datos es impar, la media coincide con el valor del centro de la distribución.

Ejemplo: Las calificaciones de un grupo de alumnos son 5-7-8-5-6-9-1. Para calcular la mediana, en primer lugar ordenamos los datos: 1-5-5-6-7-8-9. La mediana coincide con el dato central que es igual a 6. Por tanto, Me=6.

  • Si el número de datos es par, la media es la media aritmética de los dos valores centrales.

Ejemplo: Las calificaciones  ordenadas de un grupo de alumnos son 1-3-5-6-7-8-9-9. El número de datos es par. Por tanto, existen dos, que no uno, valores centrales: 6-7. De este modo, se toma como mediana la media de dichos valores: Me=(6+7)/2=6.5

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Mediana estadística" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Escalas categóricas

Las escalas categóricas o escalas cualitativas son aquellas escalas de medida que asignan una categoría relativa a una característica de estudio y no una medida cuantitativa a cada uno de los elementos u objetos que forman un conjunto, muestra o población. Por ejemplo son escalas categóricas, el sex...

Muestreo de aceptación

El muestreo de aceptación es el conjunto de técnicas que tiene como objetivo determinar la aceptación o rechazo de un lote de material o de artículos recibidos en una empresa en base a una muestra proveniente del lote, en base a criterios probabilísticos y de coste económico y teniendo en cuenta los...

Fuentes de información demográfica

Las fuentes de información demográfica o fuentes demográficas son los diferentes documentos o materiales que sirven para recopilar información sobre la población de un territorio o demarcación. Pueden clasificarse en fuentes demográficas primarias, cuando las fuentes fueron recopiladas desde su orig...

Datos desagregados

En estadística, los datos desagregados son aquellos datos que muestran un magnitud total o global, es to es, un dato agregado, dividida en sus diferentes partes o elementos. Por ejemplo, un dato agregado o global de paro puede mostrarse en forma de datos desagregados por provincia, edad, sexo o rama...