Mediana estadística

mediana_histograma.png

Imagen: La mediana se muestra en el histograma como el valor que separa el 50% de los datos a cada lado, mostrando de este modo el "centro" de la distribución que puede tomarse como medida representativa del conjunto de datos. 

En estadística, la mediana (Me) es el valor de la variable que separa a la mitad inferior de los datos ordenados de la muestra de su mitad superior. Se utiliza como medida de tendencia central para una variable cuantitativa u ordinal y por tanto su valor uede tomarse como representativo del conjunto de los datos. Frente a otras medidas de tendencia central, especialmente la media aritmética simple, presenta la ventaja de que no se ve afectada por los extremos de la distribución y valores atípicos; así, por ejemplo, la mediana de la renta se utiliza frecuentemente en lugar de la renta media, ya que esta última sobrestima el valor medio de las rentas al incluir las rentas muy altas que arrastran hacia arriba su valor. De esta forma, la mediana es un estadístico robusto frente a distribuciones muy asimétricas, con extremos muy largos, y valores atípicos. 

Para calcular la mediana, en primer lugar deben ordenarse los datos de menor y mayor, para a continuación tomar como mediana el dato que se encuentra en el medio de la lista ordenada. Cuando el número de datos es par, surge el problema de determinar cuál es el valor en el medio de la lista o distribución de datos. La solución más frecuente es esta:

  • Si el número de datos es impar, la media coincide con el valor del centro de la distribución.

Ejemplo: Las calificaciones de un grupo de alumnos son 5-7-8-5-6-9-1. Para calcular la mediana, en primer lugar ordenamos los datos: 1-5-5-6-7-8-9. La mediana coincide con el dato central que es igual a 6. Por tanto, Me=6.

  • Si el número de datos es par, la media es la media aritmética de los dos valores centrales.

Ejemplo: Las calificaciones  ordenadas de un grupo de alumnos son 1-3-5-6-7-8-9-9. El número de datos es par. Por tanto, existen dos, que no uno, valores centrales: 6-7. De este modo, se toma como mediana la media de dichos valores: Me=(6+7)/2=6.5

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Mediana estadística" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Moda absoluta y moda relativa

En relación a la moda de una variable estadística, cabe distinguir entre moda absoluta y moda relativa. La moda absoluta es el valor con mayor frecuencia de todos los valores de la variable estadística, es decir, es la moda en sentido estricto. Pero por otro lado, también se distingue la moda re...

Coeficiente de correlación biserial puntual

El coeficiente de correlación biserial puntual o coeficiente de correlación punto-biserial es un coeficiente que mide la correlación o relación estadística entre una variable cuantitativa y una variable dicotómica genuina o pura, esto es, que no ha sido el objeto de una dicotomización artificial. Un...

Variable cardinal

Variable cardinal es un término para denominar a un tipo de variable estadística que mide o cuantifica  una característica con un número. Es sinónimo de variable estadística cuantitativa....

Variable respuesta

En un diseño experimental, la variable respuesta es la que se observa y mide con el objetivo de analizar como dicha variable es influenciada por los tratamientos bajo control. Por ejemplo, a la hora de examinar la eficacia de un medicamento, el tratamiento es la administración del medicamento, mient...