Mediana estadística

mediana_histograma.png

Imagen: La mediana se muestra en el histograma como el valor que separa el 50% de los datos a cada lado, mostrando de este modo el "centro" de la distribución que puede tomarse como medida representativa del conjunto de datos. 

En estadística, la mediana (Me) es el valor de la variable que separa a la mitad inferior de los datos ordenados de la muestra de su mitad superior. Se utiliza como medida de tendencia central para una variable cuantitativa u ordinal y por tanto su valor uede tomarse como representativo del conjunto de los datos. Frente a otras medidas de tendencia central, especialmente la media aritmética simple, presenta la ventaja de que no se ve afectada por los extremos de la distribución y valores atípicos; así, por ejemplo, la mediana de la renta se utiliza frecuentemente en lugar de la renta media, ya que esta última sobrestima el valor medio de las rentas al incluir las rentas muy altas que arrastran hacia arriba su valor. De esta forma, la mediana es un estadístico robusto frente a distribuciones muy asimétricas, con extremos muy largos, y valores atípicos. 

Para calcular la mediana, en primer lugar deben ordenarse los datos de menor y mayor, para a continuación tomar como mediana el dato que se encuentra en el medio de la lista ordenada. Cuando el número de datos es par, surge el problema de determinar cuál es el valor en el medio de la lista o distribución de datos. La solución más frecuente es esta:

  • Si el número de datos es impar, la media coincide con el valor del centro de la distribución.

Ejemplo: Las calificaciones de un grupo de alumnos son 5-7-8-5-6-9-1. Para calcular la mediana, en primer lugar ordenamos los datos: 1-5-5-6-7-8-9. La mediana coincide con el dato central que es igual a 6. Por tanto, Me=6.

  • Si el número de datos es par, la media es la media aritmética de los dos valores centrales.

Ejemplo: Las calificaciones  ordenadas de un grupo de alumnos son 1-3-5-6-7-8-9-9. El número de datos es par. Por tanto, existen dos, que no uno, valores centrales: 6-7. De este modo, se toma como mediana la media de dichos valores: Me=(6+7)/2=6.5

Puede interesarte también



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Mediana estadística" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Variable cardinal

Variable cardinal es un término para denominar a un tipo de variable estadística que mide o cuantifica  una característica con un número. Es sinónimo de variable estadística cuantitativa....

Correlación ítem-test (correlación ítem-total)

En teoría de los tests, la correlación ítem-test o correlación ítem-total es la correlación estadística entre la puntuación obtenida en un ítem concreto de un test y la puntuación total, medida a través del coeficiente de correlación de Pearson. De esta forma,  la correlación ítem-test es una m...

Niveles de factor

En estadística y especialmente en el contexto del análisis de varianza, los niveles de factor son los diferentes valores, tratamientos o modalidades que toma una variable control en el diseño de un experimento. Por ejemplo, si se están experimentando cuatro tratamientos hormonales para investigar su...

Estadígrafos

Un estadígrafo es un estadístico muestral, es decir, cualquier medida, indicador o fórmula aplicada a los datos de una muestra, con el objetivo de obtener inferir conclusiones sobre la población o simplemente obtener informacion resumida sobre la muestra. ...