Media geométrica

La media geométrica de una serie o conjunto de valores cuantitativos \(x-1,x_2,...,x_n\) se calcula a través de la siguiente fórmula: 

$$G=(x_1 \cdot x_2 \cdot \cdots \cdot x_n)^{1/n}$$

Por ejemplo, la media geométrica de los valores 2 y 4 es:

$$G=(2 \times 4)^{1/2}=2.828$$

En relación con el resto de medias pitagóricas (media aritmética y media armónica), la media geométrica es siempre menor o igual que la media aritmética sinple y mayoe que la media harmónica.

Aplicación para el cáculo de tasas medias de interés o crecimiento

La media geométrica se utiliza especialmente para el cálculo de tasas medias de variación y tasas de interés medio. Veamos como y porqué a través de un ejemplo:

Supongamos que se ha invertido un capital de 1000€ a dos años, a unas tasa de interés acumulado del 10% y 20% respectivamente. Queremos calcular la tasa de interés medio.

Si utilizamos la media aritmética simple, el resultado es:

$$I(\overline{x})=\cfrac{10+20}{2}=15\%$$

Comprobemos ahora si este resultado es correcto. Para ello, calculemos el capital realmente resultante a los dos años en euros:

$$C=1000 \times (1+0.1) \times (1+0.2)=1320$$

Calculemos ahora el capital resultante si se invirtiese al 15% en dos años, según el resultado de la media aritmética:

$$C=1000 \times (1+0.15) \times (1+0.15)=1322.5$$

Dado que la media aritmética no proporciona el mismo capital que en la realidad, no puede afirmarse que nos de un valor correcto para el interés medio. Está claro que el interés constante medio debe ser algo inferior al 15%, para que el capital sea exactamente 1320€. Una ecuación nos da rápidamente la solución:

$$1000(1+i)^2=1320 \rightarrow i=0.1489=14.89\%$$

Este 14.89% es por otro lado, el valor que nos proporciona la media geométrica, sin olvidar que añadimos 1 a las tasas de interés para que el resultado sea el correcto:

$$G=(1.10 \times 1.20)^{1/2}=1.1489 \rightarrow I(G)=1.1489-1=0.1489=14.89%$$

Puede interesarte también




Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Media geométrica" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Varianza muestral

Este artículo es sobre la varianza muestral sin corregir para una serie de datos. Se denomina también varianza poblacional, aunque en Ikusmira utilizaremos el término de varianza poblacional para hacer referencia a la varianza de una distribución de probabilidad. Quizás estés interesado mñas exacta...

Estadísticos descriptivos

Los medidas estadísticas descriptivas son estadísticos muestrales que aplicados a una muestra o conjunto de datos proporcionan en forma resumida sus características más importantes, de forma que ofrecen una descripción del conjunto de datos. Entre estas medidas cabe destacar las medidas de centraliz...

Asociación no estadística

Una asociación no estadística es aquella asociación, relación o tendencia de emparejamiento entre valores de dos variables estadística que se explica meramente por los efectos del azar y que por tanto no resulta significativa estadísticamente....

Correlación

En la imagen, dos nubes de puntos diferentes que muestran correlación lineal positiva (izquierda) y negativa (derecha) respectivamente. En estadística, el término correlación se refiere generalmente a la relación o asociación estadística entre dos variables cuantitativas; por ejemplo, la correlac...