Distribución muestral de un estimador

La distribución muestral de un estimador, también llamada distribución de muestreo o distribución en el muestreo de un estimador o estadístico, es la distribución de probabilidad de los valores que puede tomar un estimador concreto en el caso de que se tome una muestra aleatoria. 

Cuando se toman muestras aleatorias, el valor de un estimador o estadístico toma diferentes valores dependiendo de la muestra extraida. Dado que la muestra es aleatoria, el valor del estimador también se puede considerar una variable aleatoria y por lo tanto tendrá una distribución de probabilidad asociada a la que llamaremos distribución muestral del estimador.

La distribución muestral del estimador nos revela aspectos fundamentales sobre la idoneidad del estimador para estimar un parámetro poblacional en concreto, por ejemplo sobre su insesgadez respecto del párametro  y sobre su precisión.

Ejemplo

Una población viene representada por este modelo de probabilidad con un parámetro desconocido \(\theta\) que se desea estimar:

x
p(x)
\(\theta-1\)
1/3
\(\theta\)
1/3
\(\theta+1\)
1/3

1

Para estimar el parámetro \(\theta\) se ha propuesto el estimador de la media muestral con tamaño de muestra aleatoria simple 2. A continuación, se detallan las diferentes muestras posibles, el estimador resultante y la probabilidad de la muestra:

Muestras
Estimador (\(\overline{x})\)

Probabilidad

\((\theta-1,\theta-1)\) \(\theta-1\)
1/9
\((\theta-1,\theta)\) \(\theta-0.5\) 1/9
\((\theta-1,\theta+1)\) \(\theta\) 1/9
\((\theta,\theta-1)\) \(\theta-0.5\) 1/9
\((\theta,\theta)\) \(\theta\) 1/9
\((\theta,\theta+1)\) \(\theta+0.5\) 1/9
\((\theta+1,\theta-1)\) \(\theta\) 1/9
\((\theta+1,\theta)\) \(\theta+0.5\) 1/9
\((\theta+1,\theta+1)\) \(\theta+1\) 1/9


1

Vamos a reunir los valores que resultan iguales para el estimador y sumar sus probabilidades:

\(\overline{x}\)
\(p(\overline{x})\)
\(\theta-1\) 1/9
\(\theta-0.5\) 2/9
\(\theta\) 3/9
\(\theta+0.5\) 2/9
\(\theta+1\) 1/9

1

Concretados todos los valores posibles que puede tomar el estimador de la media con sus respectivas probabilidades, esto es, su distribución de probabilidad, hemos obtenido su distribución muestral. 



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Distribución muestral de un estimador" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Variable independiente

Una variable independiente es aquella variable que influye de alguna forma y en mayor o menor medida sobre otra variable denominada variable dependiente. La relación entre una variable dependiente e independiente puede ser absolutamente causal y directa, sin variabilidad, o puede incluir factores de...

Mu y sigma

Mu y sigma son dos letras griegas utilizadas comúnmente en estadística como símbolos para denominar respectivamente la media y la desviación típica como parámetros fundamentales que caracterizan una población estadística, además de constituir los parámetros que definen absolutamente una distribución...

Estadística paramétrica

La estadística paramétrica es el conjunto de métodos estadísticos que partiendo de un modelo aleatorio con unos parámetros concretos para una distribución de datos, tienen como finalidad estimar o contrastar dichos parámetros en base a la muestra observada. La validez de un método paramétrico depend...

Distribución de llegadas

Imagen: Distribuciones de llegadas en forma gráfica según un proceso de Poisson con diferentes tasas de llegadas: el proceso de abajo tiene una tasa de llegadas (parámetro lambda) mayor que el de arriba. Una distribución de llegadas es la especificación en forma de distribución de probabil...