Distribución muestral de un estimador

La distribución muestral de un estimador, también llamada distribución de muestreo o distribución en el muestreo de un estimador o estadístico, es la distribución de probabilidad de los valores que puede tomar un estimador concreto en el caso de que se tome una muestra aleatoria. 

Cuando se toman muestras aleatorias, el valor de un estimador o estadístico toma diferentes valores dependiendo de la muestra extraida. Dado que la muestra es aleatoria, el valor del estimador también se puede considerar una variable aleatoria y por lo tanto tendrá una distribución de probabilidad asociada a la que llamaremos distribución muestral del estimador.

La distribución muestral del estimador nos revela aspectos fundamentales sobre la idoneidad del estimador para estimar un parámetro poblacional en concreto, por ejemplo sobre su insesgadez respecto del párametro  y sobre su precisión.

Ejemplo

Una población viene representada por este modelo de probabilidad con un parámetro desconocido \(\theta\) que se desea estimar:

x
p(x)
\(\theta-1\)
1/3
\(\theta\)
1/3
\(\theta+1\)
1/3

1

Para estimar el parámetro \(\theta\) se ha propuesto el estimador de la media muestral con tamaño de muestra aleatoria simple 2. A continuación, se detallan las diferentes muestras posibles, el estimador resultante y la probabilidad de la muestra:

Muestras
Estimador (\(\overline{x})\)

Probabilidad

\((\theta-1,\theta-1)\) \(\theta-1\)
1/9
\((\theta-1,\theta)\) \(\theta-0.5\) 1/9
\((\theta-1,\theta+1)\) \(\theta\) 1/9
\((\theta,\theta-1)\) \(\theta-0.5\) 1/9
\((\theta,\theta)\) \(\theta\) 1/9
\((\theta,\theta+1)\) \(\theta+0.5\) 1/9
\((\theta+1,\theta-1)\) \(\theta\) 1/9
\((\theta+1,\theta)\) \(\theta+0.5\) 1/9
\((\theta+1,\theta+1)\) \(\theta+1\) 1/9


1

Vamos a reunir los valores que resultan iguales para el estimador y sumar sus probabilidades:

\(\overline{x}\)
\(p(\overline{x})\)
\(\theta-1\) 1/9
\(\theta-0.5\) 2/9
\(\theta\) 3/9
\(\theta+0.5\) 2/9
\(\theta+1\) 1/9

1

Concretados todos los valores posibles que puede tomar el estimador de la media con sus respectivas probabilidades, esto es, su distribución de probabilidad, hemos obtenido su distribución muestral. 



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Distribución muestral de un estimador" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Técnicas de recolección de datos

Las técnicas de recolección de datos son el cojunto de instrumentos y procedimientos utilizados en una investigación cuantitativa, para desarrollar a continuación el análisis de datos y poder así sacar conclusiones sobre el fenómeno del que se han extraído datos. Fundamentalmente, se distinguen tipo...

Gráfico lineal (gráfico de línea)

Un gráfico lineal o gráfico de línea es un gráfico estadístico bidimensional que une una serie de puntos que se han marcado previamente, con el objetivo de indicar una evolución en la magnitud expresada en los puntos o realizar una comparación de un conjunto de datos con otros. Puede complementarse ...

Coeficiente de asimetría de Pearson

El coeficiente de asimetría de Pearson (Karl Pearson, 1857-1936) es una medida de asimetría estadística que se basa en la diferencia entre media aritmética, mediana y moda para cuantificar la dirección y el nivel de asimetría de una distribución estadística, normalizando el resultado dividiendo el r...

Intervalos de clase monomodulares y no monomodulares

En una distribución de frecuencias agrupada en intervalos, los intervalos de clase son monomodulares cuando todos tienen la misma amplitud o módulo. En caso contrario, se dice que las clases son no monomodulares. Como criterio general, se establecerán intervalos de clase monomodulares y se construir...