Diagrama de caja y bigotes

Un diagrama de caja o gráfico de caja, también denominado diagrama de caja y bigotes o box plot, es un diagrama que pretende representar una variable estadística cuantitativa continua, de forma que puedan establecerse con precisión el valor central, la dispersión  y otras características como asimetría y curtosis. Asimismo, establece un criterio para la consideración de outliers o datos atípicos.

Se construcción se realiza desarrollando estos pasos de forma secuencial:

  1. Se calculan la mediana y el primer y tercer cuartil.
  2. Con los valores anteriores se construye en un eje graduado horizontal o vetical la denominada caja, que tiene como límites a izquierda y derecha el primer y tercer cuartil respectivamente. La mediana se representa dentro de la caja con una línea que divide la caja en dos.
  3. Se calcula la distancia 1.5IQR, siendo IQR el recorrido intercuartílico o la diferencia entre el tercer y el primer cuartil. 
  4. A partir de los extremos de la caja se extienden líneas a un lado y otro de la caja hasta llegar a los datos más pequeños (a la izquierda) o más grandes (a la derecha), pero hasta una longitud máxima de 1.5IQR.
  5. En el caso de que los bigotes se hayan extendido hasta su longitud máxima de 1.5IQR, los datos que se sitúen fuera de esos límites tienen la consideración de outliers o datos atípicos.

Una versión del gráfico caja lleva los bigotes hasta el dato menor y mayor, sin establecer una longitud máxima para estos. 

Ejemplo de aplicación

diagrama_caja.png

Se han registrado las siguientes observaciones de temperaturas máximas diarias en marzo en un estación determinada, medidas en grados Celsius:

10.8 12.5 17.0 17.4 18.1 18.6 19.0 20.5 21.2 21.6 22.2 23.5

Se han calculado con el software R el primer cuartil, la mediana y el tercer cuartil:

$$Q_1=17.3\ ; \ Me=18.8; \ Q_3=21.3$$

Calculamos 1.5IQR=1.5x(21.3-17.3)=6

El bigote superior se extiende del tercer cuartil a la derecha hasta 21.3+6=27.3. Como los datos se agotan antes de llegar a ese valor, el bigote "se corta" en el valor máximo: 23.5.

El bigote inferior se extiende desde el primer cuartil a la izquierda hasta 17.3-6=11.3. Mas allá sigue habiendo datos, de modo que prolongamos el bigote en toda esa longitud hasta 11.3. El dato que queda fuera se considera dato atípico.



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Diagrama de caja y bigotes" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Variable explicativa

Las variables explicativas son las variables que se establecen con el objetivo de predecir el valor que toma la variable de estudio, llamada también variable independiente. Por ejemplo, una variable explicativa para el rendimiento académico de un estudiante universitario es el número de horas semana...

Robustez estadística

En estadística, robustez se refiere a la propiedad que tienen ciertos procedimientos estadísticos (test estadísticos, desarrollo de modelos, ...) de proporcionar consecuencias válidas incluso en el caso de que se vilen las hipótesis bajo las que se ha desarrollado el procedimiento. Por ejemplo, es h...

Muestra representativa

Una muestra estadística es representativa respecto de una población cuanto se ha escogido aleatoriamente y posee el tamaño suficiente, de modo que su análisis permita inferir parámetros y características de la población con un margen de error conocido y aceptable, de forma que representa adecuadamen...

Frecuencia porcentual

La frecuencia procentual es la frecuencia relativa de un valor o modalidad de una variable estadística expresada en porcentaje. Por ejemplo, si en un gurpo de 20 alumnos, los aprobados en una determinada asignatura son 15, la frecuencia relativa porcentual es del (15/20)x100=75%....