Puntuación estándar (puntuación tipificada, valor z)

Una puntuación estándar o estandarizada, puntuación tipificada o valor z (generalmente expresado con la letra z) es un valor de una variable estadística al que se ha sustraido la media y el resultado se ha dividido entre la desviación típica o estándar. Dada una variable estadística formada por los datos \(x_i=x_1,x_2,\ldots,x_n\), las puntuación estándar \(x_i\) se calculan del siguiente modo:

$$z_i=\cfrac{x_i-\overline{x}}{s_x}$$

La puntuación estándar indica de esta forma el número de desviaciones estándar que se desvía un valor respecto a la media y por tanto puede considerarse un valor que representa el alejamiento relativo de la media de la distribución, de modo que puede utilizarse para como referencia para comparar valores de distribuciones con diferentes medias y desviaciones. 

La media de las puntuaciones estándar de una variables estadística es 0 y su desviación típica 1. Por otro lado, las puntuaciones estándar son dimensionales, su valor no representa ninguna unidad en concreto; de hecho, así debe ser para poder comparar valores de diferentes variables.

La operación estadística que consiste en pasar de los valores originales a los valores estándar se denomina estandarización o tipificación. 

Ejemplo

Se desea comparar el rendimiento de dos trabajadores que trabajan en diferentes máquinas, fabricando diferentes piezas. El trabajador A ha producido durante la última semana 120 piezas, siendo la media en la que se incluyen a todos los trabajadores que han trabajado en la misma máquina 100 pìezas y la desviación típica 10 piezas. Por su parte, el trabajador B ha fabricado 220 piezas con una media en su grupo de 200 y una desviación de 20. ¿Qué trabajador desarrolla un mayor rendimiento en su grupo?

No se pueden comparar las producciones sin más, ya que corresponden a diferentes piezas. Para poderlos comprar, debemos calcular las puntuaciones estándar correspondientes a los dos trabajadores:

$$z_A=\cfrac{120-100}{10}=2$$

$$z_B=\cfrac{220-200}{20}=1$$

El trabajador A  tiene una mayor puntuación estándar por lo que es mejor relativamente, dentor de su grupo, que el trabajador A.



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Puntuación estándar (puntuación tipificada, valor z)" (en línea)   Enlace al artículo
Última actualización: 19/01/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Objeto material y objeto formal de la estadística

El objeto material de la estadística viven dado por los datos como información en forma de valores cuantitativos o cualitativos sobre cierta característica de un conjunto de elementos. Su objeto formal, su perspectiva de análisis, consiste en encontrar las pautas  y regularidades que se puede e...

Lema de Neyman-Pearson

En inferencia estadística, el lema de Neyman-Pearson es una proposición que demuestra que un contraste o prueba de hipótesis óptimo dadas una hipótesis nula y una hipótesis alternativa paramétricas simples es aquel que tiene como estadístico de contraste la razón de verosimilitud de la muestra para ...

Medio rango

Medio rango es una medida o estadístico de tendencia central, calculada como media aritmética del valor máximo y valor mínimo de una distribución estadística. Su uso en estadística no es muy frecuente debido principalmente a su falta de robustez por la sensibilidad extrema que presenta frente a los ...

Error típico (error estándar)

El error típico o error estándar es la desviación típica de la distribución muestral de un estimador, que indica la variabilidad de dicho estimador alrededor de su valor central, coincidiendo este último en el caso de los estimadores insesgados con el parámetro que se desea estimar. El error típico ...