Límites reales de clase

En una distribución de datos agrupados en intervalos generalmente los intervalos se muestran de forma de contigua, de forma que el límite superior de un intervalo de clase coincide  con el límite inferior del intervalo siguiente, con la convención de que los datos con valores iguales a ese límite se incluyen en el intervalo superior. Por ejemplo, si respecto a datos sobre alturas de personas tenemos los intervalos contiguos 165-170cm, 170-175cm, ..., una persona con altura de 170cm se incluye en el intervalo 170-175cm.  Por ejemplo, al observar las alturas de un grupo de personas, debemos tener en cuenta que la altura es, de por sí, una variable continua, pero a pesar de ello nunca decimos que la altura de una persona es 169.8cm, por la limitación del instrumento de medida y también por simplificar y redondear, de modo que diremos que la altura de esa persona de 169.8cm es 170. En estos casos en los que la variable continua en la práctica toma valores discretos, dichos límites no son los límites reales de clase o límites  reales de intervalo (en inglés, class boundaries): en el intervalo 165-169 entran las personas como una altura real comprendida entre 164.5 y 169.5, ya que una altura de 164.6 es redondeada a 165 y una altura de 169.8 a 170, como hemos explicado, de modo que el límite real entre ambos intervalos es 169.5cm. 

Para la determinación de la marca de clase de forma lo más exacta posible, se tomará el punto medio sobre los límites reales. Por ejemplo en el intervalo de alturas 165-170cm, la marca de clase o punto medio del intervalo es 167.5, pero si se toman los límites reales es 167, punto medio entre 164.5 y 169.5.

Otros ejemplos

  • En intervalos de edades del tipo 20-24 años, 25-29 años, ...., el límite real superior para el primer intervalo no es 24 años, porque decimos que una persona tiene 24 años hasta que está a punto de cumplir 25; por tanto, el límite real superior de ese intervalo es 24.99 años.
  • En intervalos sobre datos relativos número de pasos realizados por una persona en un día, se ha establecido los intervalos 0-2000, 2000-5000, ... El límite real superior para el intervalo 0-2000 es 1999, ya que una persona que haya recorrido exactamente 2000 pasos se incluye en el intervalo superior. 


Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Límites reales de clase" (en línea)   Enlace al artículo
Última actualización: 18/02/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Gráfico de cascada

Imagen: Gráfico de cascada que muestra el cambio de una magnitud de una variable (en azul) a través de los incrementod (en verde) y decrementos (en rojo) ocurridos a lo largo del periodo. Créditos: ExcelExpert1 - Commons. Un gráfico de cascada es un diagrama de barras que representa la evolución...

Censo estadístico

Un censo estadístico es la contabilización, recuento y análisis exhaustivo de todas las unidades que conforman una población o universo en un territorio y momento determinado. Hace referencia tanto al conjunto de operaciones necesarias para dicho recuento, como al propio resultado final de dichas op...

Prueba de Chow

La prueba de Chow o contraste de Chow es una prueba estadística destinada a contrastar la igualdad de los coeficientes de regresión en dos grupos de datos. De esta forma, se utiliza para decidir si ha existido un cambio estructural al pasar de un conjunto de datos al otro. La prueba fue originalment...

Recta de regresión

Una recta de regresión es una recta que se ajusta a una distribución de datos bidimensional \((x_i,y_i)\), tomando como variable independiente una de las variables de la distribución, la que se considera variable explicativa (por convenio, se denominará la variable \(x\) )  y relacionándola con...