Comprobación de Charlier

La comprobación de Charlier (en homenaje a su inventor, el astrónomo sueco Carl Charlier, 1862-1934) es una comprobación de la realización correcta  de los cálculos manuales de la varianza muestral cuando esta se ha calculado para un conjunto de datos agrupados en una distribución de frecuencia a través de la computación de una nueva columna de valores a partir de la tabla de frecuencias

Para la comprobación se parte de la siguiente identidad, donde los valores \(x\) y \(n\) son respectivamente los valores correspondientes a las valores de la variable o marcas de clase cuando la distribución está agrupada en intervalos y frecuencias de cada intervalo:

$$\sum n(x+1)^2=\sum nx^2+2\sum nx+ \sum n$$

Las sumas a la derecha de la identidad ya han sido desarrolladas previamente para el cálculo de la varianza, por lo que son conocidas. La comprobación de Charlier consiste en desarrollar la suma correspondiente al lado de izquierdo de la expresión y verificar que su resultado coincide con la suma de las sumas del lado derecho ya calculadas previamente. 

Ejemplo

Por ejemplo, a partir de la tabla de frecuencias de las notas obtenidas por un grupo de alumnos en un examen (columnas 1 y 2) recogidas en la primera columna, se muestran a continuación los cálculos para la determinación de la varianza muestral (columnas 3, 4 y 5). La última columna es la correspondiente a la comprobación de Charlier y no es necesaria para el cálculo de la varianza; únicamente es necesaria para la comprobación.

Intervalo \(x\) (marca de clase) \(n\) \(nx\) \(nx^2\) \(n(x+1)^2\)
0-2 1 3 3 3 12
2-4 3 6 18 54 96
4-6 5 12 60 300 432
6-8 7 8 56 392 512
8-10 9 4 36 324 400


33 173 1073 1452

Calculamos la varianza muestral:

$$s_x^2=\cfrac{1073}{33}-\Bigg(\cfrac{173}{33}\Bigg)^2=5.05$$

Aplicamos a continuación la comprobación de Charlier para dar por buenas las sumas calculadas en las tablas:

$$1452=1073+2 \times 173+33$$

La igualdad es correcta, por lo que las sumas para el cálculo de la varianza también lo son.



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Comprobación de Charlier" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Distribución monomodular o equiespaciada

Una distribución de frecuencias se dice que es monomodular o equiespaciada cuando todos sus intervalos de clase tienen la misma amplitud o módulo.  Puede interesarte también Intervalos de clase monomodulares y no monomodulares ...

Coeficiente de asimetría de Pearson

El coeficiente de asimetría de Pearson (Karl Pearson, 1857-1936) es una medida de asimetría estadística que se basa en la diferencia entre media aritmética, mediana y moda para cuantificar la dirección y el nivel de asimetría de una distribución estadística, normalizando el resultado dividiendo el r...

Números aleatorios

Los números aleatorios son números escogidos totalmente al azar de un conjunto de valores o de un intervalo. Por ejemplo, pueden considerarse números aleatorios los resultados de un dado equilibrado, que proporcionas números aleatorios entre 1 y 6, o los números de la lotería. Más específicamente, u...

Separabilidad demográfica

La separabilidad demográfica es la diferencia que se da en una población de referencia respecto de un conjunto de variables. Por ejemplo, si se verifica de forma significativa que hombres y mujeres tienen en promedio diferentes niveles de salario, la separabilidad demográfica es alta, esto es, lo cu...