Teorema de De Moivre-Laplace

El teorema de De Moivre-Laplace (Abraham De Moivre, 1667-1754;  Pierre-Simon de Laplace, 1749-1827) es un teorema que establece que una distribución binomial se aproxima a una distribución normal, cuando el parámetro \(n\) de la distribución binomial es grande (generalmente puede establecerse como mayor que 30) y el parámetro \(p\) no es ni cercano a 0 ni cercano a 1 (generalmente entre 0.05 y 0.95). La aproximación normal es la siguiente:

$$B(n,p) \longrightarrow N(\mu=np,\sigma=\sqrt{npq})$$

Ejemplo

En un proceso productivo la probabilidad de que una pieza sea defectuosa es 0.2. ¿Cuál es la probabilidad de que en un lote de 100 piezas se encuentren menos de 22 piezas defectuosas?

El número de piezas defectuosas, suponiendo que existe independencia entre ellas, se distribuye según la distribución binomial \(B(n=100,p=0.2)\). Basándonos en ello, podemos calcular de este modo la probabilidad de que existan menos de 22 piezas defectuosas entre 100:

$$P[X \leq 2]=P[X=0]+P[X=1]+...+P[X=100]$$

$$=0.25^{0}\times0.75^{100}\times\cfrac{100!}{0!100!}+0.25^{1}\times0.75^{99}\times\cfrac{100!}{1!99!}+...+0.25^{21}\times0.75^{79}\times\cfrac{100!}{21!79!}$$

El cálculo manual de la anterior probabilidad es largo y tedioso, aunque puede calcularse también de forma inmediata utilizando un programa de estadística de entre los habituales, resultando una probabilidad exacta de 0.6540.

Alternativamente, se puede utilizar la aproximación a través de una distribución normal aplicando el teorema de De Moivre-Laplace:

$$X \sim B(n=100,p=0.2) \rightarrow N(\mu=np=20,\sigma=\sqrt{npq}=\sqrt{np(1-p)}=4)$$

De esta forma, el cálculo de la probabilidad requerida es mucho más simple, aunque previamente hay que aplicar la corrección por continuidad ya que el número de piezas defectuosas es una magnitud discreta y la distribución normal es continua:

$$P[X < 22]=P[X<21.5]=P\Bigg[Z<\cfrac{21.5-20}{4}\Bigg]=P[Z<0.375]=0.6461$$

Comparando ambos resultados, vemos que el error de la aproximación normal respecto de la probabilidad exacta es menor del 1% en este caso, por lo que puede considerarse una buena aproximación. 




Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Teorema de De Moivre-Laplace" (en línea)   Enlace al artículo
Última actualización: 01/12/2024

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Sucesos incompatibles

Imagen: Los sucesos incompatibles son disjuntos entre sí, es decir, no pueden ocurrir a la vez.  En teoría de probabilidades, se dice que dos o más sucesos o eventos aleatorios son incompatibles, mutuamente excluyentes o disjuntos entre sí cuando no pueden ocurrir al mismo tiempo o, más exac...

Variable aleatoria

Intuitivamente, que no formalmente, una variable aleatoria es el conjunto de valores numéricos que se asocian a los resultados de un experimento aleatorio. Por ejemplo, cuando lanzamos una moneda, el espacio muestral viene dado por cara y cruz (\(\Omega=\{O,X\}\)), una variable aleatoria sería aquel...

Probabilidad subjetiva (definición subjetiva de probabilidad)

La probabilidad subjetiva o más exactamente la definición subjetiva de probabilidad es la interpretación de la probabilidad como valor que refleja el grado de creencia  en relación a la ocurrencia de un suceso en base al juicio o evaluación que realiza de forma individual una persona. Se opone ...

Suceso seguro

En teoría de probabilidades, un suceso seguro, suceso cierto o suceso universal es aquel que ocurre en todo caso, para cualquier resultado del experimento aleatorio en cuestión, de forma que en forma de conjunto engloba a todos los resultados posibles o sucesos elementales, de forma que coincide con...