Teorema de De Moivre-Laplace

El teorema de De Moivre-Laplace (Abraham De Moivre, 1667-1754;  Pierre-Simon de Laplace, 1749-1827) es un teorema que establece que una distribución binomial se aproxima a una distribución normal, cuando el parámetro \(n\) de la distribución binomial es grande (generalmente puede establecerse como mayor que 30) y el parámetro \(p\) no es ni cercano a 0 ni cercano a 1 (generalmente entre 0.05 y 0.95). La aproximación normal es la siguiente:

$$B(n,p) \longrightarrow N(\mu=np,\sigma=\sqrt{npq})$$

Ejemplo

En un proceso productivo la probabilidad de que una pieza sea defectuosa es 0.2. ¿Cuál es la probabilidad de que en un lote de 100 piezas se encuentren menos de 22 piezas defectuosas?

El número de piezas defectuosas, suponiendo que existe independencia entre ellas, se distribuye según la distribución binomial \(B(n=100,p=0.2)\). Basándonos en ello, podemos calcular de este modo la probabilidad de que existan menos de 22 piezas defectuosas entre 100:

$$P[X \leq 2]=P[X=0]+P[X=1]+...+P[X=100]$$

$$=0.25^{0}\times0.75^{100}\times\cfrac{100!}{0!100!}+0.25^{1}\times0.75^{99}\times\cfrac{100!}{1!99!}+...+0.25^{21}\times0.75^{79}\times\cfrac{100!}{21!79!}$$

El cálculo manual de la anterior probabilidad es largo y tedioso, aunque puede calcularse también de forma inmediata utilizando un programa de estadística de entre los habituales, resultando una probabilidad exacta de 0.6540.

Alternativamente, se puede utilizar la aproximación a través de una distribución normal aplicando el teorema de De Moivre-Laplace:

$$X \sim B(n=100,p=0.2) \rightarrow N(\mu=np=20,\sigma=\sqrt{npq}=\sqrt{np(1-p)}=4)$$

De esta forma, el cálculo de la probabilidad requerida es mucho más simple, aunque previamente hay que aplicar la corrección por continuidad ya que el número de piezas defectuosas es una magnitud discreta y la distribución normal es continua:

$$P[X < 22]=P[X<21.5]=P\Bigg[Z<\cfrac{21.5-20}{4}\Bigg]=P[Z<0.375]=0.6461$$

Comparando ambos resultados, vemos que el error de la aproximación normal respecto de la probabilidad exacta es menor del 1% en este caso, por lo que puede considerarse una buena aproximación. 




Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Teorema de De Moivre-Laplace" (en línea)   Enlace al artículo
Última actualización: 17/11/2024

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Probabilidad clásica (probabilidad teórica)

Quizás estés buscando "probabilidad teórica" en el sentido de probabilidad asociada a una distribución téorica de probabilidad.  La probabilidad clásica o probabilidad teórica es la probabilidad de un evento calculada como la proporción de casos favorables a ese evento de entre el total d...

Distribución normal

Imagen: Una distribución normal ajustada a un histograma de datos.  La distribución normal o distribución gaussiana, también llamada curva normal, es una distribución de probabilidad frecuentemente utilizada en estadística, con forma de campana - de hecho, se la denomina también campana de G...

Espacio de sucesos

Un espacio de sucesos es un conjunto de subconjuntos de sucesos de un experimento aleatorio formados por combinaciones de sucesos elementales, cuyas combinaciones entre sí bajo las operaciones de complementariedad, unión e intersección también pertenecen al espacio de sucesos, sobre los que se const...