Cuasivarianza (varianza corregida)

kuasibariantza.pngLa cuasivarianza o varianza muestral corregida es una fórmula de estimación de la varianza poblacional que corrige el sesgo que tiene la varianza muestral respecto a dicha varianza poblacional.

Para el cálculo de la cuasivarianza  partimos de esa misma varianza muestral, que se calcula de acuerdo a esta fórmula:

$$s^2=\cfrac{\sum(x_i-\overline{x})^2}{n}$$

Dicho fórmula tiene un sesgo como estimador respecto de la varianza poblacional \(\sigma^2\); más concretamente, subestima en promedio la varianza poblacional:

$$E[s^2]=\cfrac{n-1}{n}\sigma^2$$

Para corregir dicho sesgo, se aplica la corrección de Bessel a la varianza muestral, multiplicando la varianza muestral sin corregir por el factor n/(n-1), dando lugar a la formula de la varianza muestral corregida que denotamos por \(\hat{s}^2\):

$$\hat{s}^2=\cfrac{n}{n-1}s^2=\cfrac{n}{n-1}\cfrac{\sum(x_i-\overline{x})^2}{n}=\cfrac{\sum(x_i-\overline{x})^2}{n-1}$$

Como puede observarse la diferencia entre ambos estimadores de la varianza poblacional consiste en que la varianza corregida divide entre (n-1)  la suma de los cuadrados de las diferencia respecto a la media, mientras que la varianza muestral sin corregir divide esa suma divide entre n.

Examinando el factor  n/(n-1), podemos constatar que la diferencia entre los estimadores es muy pequeña para muestras grandes, pero notable para muestras pequeñas.

Terminológicamente hay que tener cuidado a la hora de consultar bibliografía o utilizar software estadístico, ya que frecuentemente se llama varianza poblacional (population variance) a la varianza muestral sin corregir y varianza muestral (sample variance), a secas, a la varianza muestral corregida. 

También debe tenerse en cuenta que el desarrollo de la fórmula de la cuasivarianza no permite obtener, al contrario de la varianza muestral, una expresión de cálculo rápido para la varianza. Recordemos que para la varianza muestral sin corregir puede utilizarse cualquiera de las siguientes fórmulas de forma equivalente:

$$s^2=\cfrac{\sum(x_i-\overline{x})^2}{n}=\cfrac{\sum x_i^2}{n}-\overline{x}^2$$

Pero no podemos proceder de forma análoga en el caso de la varianza corregida, ya que no procede la igualdad entre las expresiones correspondientes:

$$\hat{s }^2=\cfrac{\sum(x_i-\overline{x})^2}{n-1} \neq \cfrac{\sum x_i^2}{n-1}-\overline{x}^2$$

De modo que deberá que utilizarse siempre la primera expresión, siendo la segunda expresión absolutamente errónea. 




Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Cuasivarianza (varianza corregida)" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Hipótesis etiológicas

Las hipótesis etiológicas son las diferentes y posibles causas a las que se atribuye de forma más o menos tentativa el desarrollo de un trastorno o enfermedad, siempre bajo reserva de confirmación estadística....

Media cúbica

La media cúbica es la raíz cúbica de la media aritmética de los datos al cubo referidos a una variable estadística cuantitativa: $$\overline{x}_{cub}=\sqrt[3]{\cfrac{\sum_i x_i^3}{n}}=\Bigg(\cfrac{\sum_i x_i^3}{n}\Bigg)^{\cfrac13}$$ Es un tipo de media generalizada, al igual que la media cuadrátic...

Trimedia

La trimedia o trimedia de Tukey es una medida de tendencia central que se calcula como una media ponderada de la mediana y primer y tercer cuartiles, ponderando el doble la mediana que cada uno de los dos cuartiles: $$TM=\cfrac{Q_1+2Me+Q_3}{4}$$ Tiene como principal característica el una medi...

Censo estadístico

Un censo estadístico es la contabilización, recuento y análisis exhaustivo de todas las unidades que conforman una población o universo en un territorio y momento determinado. Hace referencia tanto al conjunto de operaciones necesarias para dicho recuento, como al propio resultado final de dichas op...