Cuasivarianza (varianza corregida)

kuasibariantza.pngLa cuasivarianza o varianza muestral corregida es una fórmula de estimación de la varianza poblacional que corrige el sesgo que tiene la varianza muestral respecto a dicha varianza poblacional.

Para el cálculo de la cuasivarianza  partimos de esa misma varianza muestral, que se calcula de acuerdo a esta fórmula:

$$s^2=\cfrac{\sum(x_i-\overline{x})^2}{n}$$

Dicho fórmula tiene un sesgo como estimador respecto de la varianza poblacional \(\sigma^2\); más concretamente, subestima en promedio la varianza poblacional:

$$E[s^2]=\cfrac{n-1}{n}\sigma^2$$

Para corregir dicho sesgo, se aplica la corrección de Bessel a la varianza muestral, multiplicando la varianza muestral sin corregir por el factor n/(n-1), dando lugar a la formula de la varianza muestral corregida que denotamos por \(\hat{s}^2\):

$$\hat{s}^2=\cfrac{n}{n-1}s^2=\cfrac{n}{n-1}\cfrac{\sum(x_i-\overline{x})^2}{n}=\cfrac{\sum(x_i-\overline{x})^2}{n-1}$$

Como puede observarse la diferencia entre ambos estimadores de la varianza poblacional consiste en que la varianza corregida divide entre (n-1)  la suma de los cuadrados de las diferencia respecto a la media, mientras que la varianza muestral sin corregir divide esa suma divide entre n.

Examinando el factor  n/(n-1), podemos constatar que la diferencia entre los estimadores es muy pequeña para muestras grandes, pero notable para muestras pequeñas.

Terminológicamente hay que tener cuidado a la hora de consultar bibliografía o utilizar software estadístico, ya que frecuentemente se llama varianza poblacional (population variance) a la varianza muestral sin corregir y varianza muestral (sample variance), a secas, a la varianza muestral corregida. 

También debe tenerse en cuenta que el desarrollo de la fórmula de la cuasivarianza no permite obtener, al contrario de la varianza muestral, una expresión de cálculo rápido para la varianza. Recordemos que para la varianza muestral sin corregir puede utilizarse cualquiera de las siguientes fórmulas de forma equivalente:

$$s^2=\cfrac{\sum(x_i-\overline{x})^2}{n}=\cfrac{\sum x_i^2}{n}-\overline{x}^2$$

Pero no podemos proceder de forma análoga en el caso de la varianza corregida, ya que no procede la igualdad entre las expresiones correspondientes:

$$\hat{s }^2=\cfrac{\sum(x_i-\overline{x})^2}{n-1} \neq \cfrac{\sum x_i^2}{n-1}-\overline{x}^2$$

De modo que deberá que utilizarse siempre la primera expresión, siendo la segunda expresión absolutamente errónea. 




Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Cuasivarianza (varianza corregida)" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Banco de datos

Un banco de datos es una plataforma telemática de acceso, consulta y obtención de datos estadísticos, disponibles generalmente para el público, elaborados por un organísmico de estadística oficial u otra institución de carácter público. ...

Tabla de contingencia

La tabla de contingencia es una tabla de doble entrada que se utiliza para resumir datos bivariados correspondientes a dos variables cualitativas. Por ejemplo, una tabla de contingencia referida al sexo y modalidad de bachillerato realizada indicaría en celdas la frecuencia conjunta de hombre y muje...

Correlación

En la imagen, dos nubes de puntos diferentes que muestran correlación lineal positiva (izquierda) y negativa (derecha) respectivamente. En estadística, el término correlación se refiere generalmente a la relación o asociación estadística entre dos variables cuantitativas; por ejemplo, la correlac...

Semiintervalo

Un semiintervalo es cada uno de los intervalos, a izquierda y derecha, que se generan al crear un intervalo restando y sumando un valor constante a un punto central del intervalo dado. Por ejemplo, en el intervalo \(5 \pm 2\) o \((3,7)\), los semiintervalos a izquierda y derecha respectivamente son ...