Corrección de Bessel

La corrección de Bessel es una corrección para la fórmula original de la varianza para un conjunto de datos, de forma que esa varianza calculada a partir de una muestra de datos sea un estimador no sesgado de la varianza poblacional \(\sigma ^ 2\). Fue desarrollada por el astrónomo y matemático alemán Friedrich Bessel (1784-1846).

La fórmula original de la varianza para un conjunto de datos es:

$$s^2 =\cfrac {\sum_i (x_i-\overline {x}) ^ 2} {n} $$

Si tomamos esta fórmula de la varianza  como estimador de la varianza poblacional \8\sigma ^ 2\), puede demostrarse que infravalora sistemáticamente dicha varianza, aunque este error disminuye al aumentar el tamaño muestral:
$$E[s^2]=\cfrac{n-1}{n}\sigma^2 \longrightarrow sesgo(s^2)=\sigma^2-E[s^2]=\cfrac{1}{n}\sigma^2$$

La expresión de la esperanza de la varianza de datos nos da una pista inmediata para la corrección del sesgo:

$$E\Bigg[\cfrac{n}{n-1}s^2\Bigg]=\cfrac{n}{n-1}\cfrac{n-1}{n}\sigma^2=\sigma^2$$
Es ese factor de corrección \(\cfrac{n}{n-1}\) aplicado a la varianza original el que da lugar a la varianza corregida:

$$\hat {s}^2 =\cfrac {n} {n-1} s ^ 2 =\cfrac {\sum_i (x_i-\overline {x}) ^ 2} {n-1}$$

La fórmula anterior que se utiliza como estimador de la varianza \(\sigma ^ 2\) se denomina varianza muestral corregida (\(\hat{s}^2\) y es insesgada respecto a la varianza \(\sigma ^ 2\).

Puede interesarte también




Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Corrección de Bessel" (en línea)   Enlace al artículo
Última actualización: 19/01/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Distribución dicotómica

Distribución dicotómica es un término alternativo para designar a la distribución de Bernoulli, esto es, la distribución que toma valores 1 (éxito) y 0 (fracaso). ...

Frecuencia acumulada

La frecuencia acumulada es el número de elementos o unidades en un conjunto de datos referidos a una variable estadística cuantitativa que toma un valor igual o inferior a uno dado, en términos absolutos (frecuencia acumulada absoluta, que se denota N) o relativos, esto es, en porcentaje (frecuencia...

Muestras no probabilísticas (muestreo no probabilístico)

Una muestra no probabilística es aquella en la que la selección de los elementos no se realiza al azar sino siguiendo criterios más o menos accidentales y subjetivos del invstigador. Dado que la aleatoriedad de la muestra es el criterio fundamental para que los resultados que se infieren de ella sea...

Separabilidad demográfica

La separabilidad demográfica es la diferencia que se da en una población de referencia respecto de un conjunto de variables. Por ejemplo, si se verifica de forma significativa que hombres y mujeres tienen en promedio diferentes niveles de salario, la separabilidad demográfica es alta, esto es, lo cu...