Corrección de Bessel

La corrección de Bessel es una corrección para la fórmula original de la varianza para un conjunto de datos, de forma que esa varianza calculada a partir de una muestra de datos sea un estimador no sesgado de la varianza poblacional \(\sigma ^ 2\). Fue desarrollada por el astrónomo y matemático alemán Friedrich Bessel (1784-1846).

La fórmula original de la varianza para un conjunto de datos es:

$$s^2 =\cfrac {\sum_i (x_i-\overline {x}) ^ 2} {n} $$

Si tomamos esta fórmula de la varianza  como estimador de la varianza poblacional \8\sigma ^ 2\), puede demostrarse que infravalora sistemáticamente dicha varianza, aunque este error disminuye al aumentar el tamaño muestral:
$$E[s^2]=\cfrac{n-1}{n}\sigma^2 \longrightarrow sesgo(s^2)=\sigma^2-E[s^2]=\cfrac{1}{n}\sigma^2$$

La expresión de la esperanza de la varianza de datos nos da una pista inmediata para la corrección del sesgo:

$$E\Bigg[\cfrac{n}{n-1}s^2\Bigg]=\cfrac{n}{n-1}\cfrac{n-1}{n}\sigma^2=\sigma^2$$
Es ese factor de corrección \(\cfrac{n}{n-1}\) aplicado a la varianza original el que da lugar a la varianza corregida:

$$\hat {s}^2 =\cfrac {n} {n-1} s ^ 2 =\cfrac {\sum_i (x_i-\overline {x}) ^ 2} {n-1}$$

La fórmula anterior que se utiliza como estimador de la varianza \(\sigma ^ 2\) se denomina varianza muestral corregida (\(\hat{s}^2\) y es insesgada respecto a la varianza \(\sigma ^ 2\).

Puede interesarte también




Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Corrección de Bessel" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Ojiva (estadística)

Imagen: A la izquierda, histograma de una variable estadística. En el centro, histograma de frecuencias acumuladas relativas correspondientes y ojiva porcentual resultante (en rojo). A la derecha, comparación de dos ojivas, la ojiva en azul presenta mayor densidad de datos en los intervalos centra...

Marco muestral

En el muestreo de poblaciones finitas, el marco muestral es la lista que contiene todos los elementos de la población estadística de la cual se va extraer la muestra. Puede tratartse del padrón de población a la hora de seleccionar ciudadanos de un municipio, lista de matriculados a la hora de selec...

Variable cuantitativa

Una variable estadística cuantitativa es una característica que se concreta a través de un proceso de medición para cada uno de los elementos de una muestra o población y por tanto expresada a través de valores numéricos. Las escalas de medida que dan lugar  a una variable estadística cuantitat...

Pictogramas (estadística)

Imagen: Pictograma que representa la evolución de la producción de trigo en una región.  En estadística, los pictogramas son diagramas que representan totales, frecuencias o proporciones mediante iconos o elementos gráficos relacionados con los datos que es están representando; por ejemplo, ...