Varianza poblacional (distribuciones de probabilidad)

La varianza poblacional, también denominada en general varianza de una variable aleatoria, o varianza de una distribución de probabilidad en concreto, es una medida de dispersión estadística de una variable aleatoria o distribución de probabilidad. Se denota por \(\sigma^2\) (sigma cuadrado) y viene dada por el momento central de segundo orden correspondiente a la variable aleatoria \(X\) en cuestión, siendo \(\mu\) la media poblacional o esperanza matemática:

$$\sigma^2=\mu_2=E[(X-\mu)^2]$$

Desarrollando la definición anterior puede calcularse también en términos de momentos respecto al origen:

$$\sigma^2=\alpha_2-\alpha_1^2=E[X^2]-\mu^2$$

Su cálculo en la práctica difiere según nos encontremos ante una variable aleatoria discreta o una variable aleatoria continua. Examinemos cada caso. 

Varianza de una distribución de probabilidad discreta

Denotando \(x_i\) y \(p(x_i)\) los diferentes valores que tomas la variable aleatoria y 

$$\sigma^2=\sum(x_i-\mu)^2p(x_i)=\sum x_i^2p(x_i) - (\sum x_ip(x_i))^2$$

Ejemplo

Vamos a calcular la varianza de la puntuación obtenida al lanzar un dado equilibrado. Para ello partimos de la distribución de probabilidad de dicha puntuación en las primeras dos columnas:

\(x_i\)
\(p(x_i)\) \(x_ip(x_i)\) \(x_i^2p(x_i)\)

1

1/6
1/6
1/6
2
1/6
2/6
4/6
3
1/6
3/6
9/6
4
1/6
4/6
16/6
5
1/6
5/6
25/6
6
1/6
6/6
36/6


suma=21/6=3.5
suma=91/6=15.16

De este modo, la varianza de la puntuación obtenida al lanzar un dado equilibrado:

$$\sigma^2=\sum x_i^2p(x_i) - (\sum x_ip(x_i))^2=15.16-3.5^2=2.91$$



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Varianza poblacional (distribuciones de probabilidad)" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Prueba de Chow

La prueba de Chow o contraste de Chow es una prueba estadística destinada a contrastar la igualdad de los coeficientes de regresión en dos grupos de datos. De esta forma, se utiliza para decidir si ha existido un cambio estructural al pasar de un conjunto de datos al otro. La prueba fue originalment...

Frecuencia acumulada

La frecuencia acumulada es el número de elementos o unidades en un conjunto de datos referidos a una variable estadística cuantitativa que toma un valor igual o inferior a uno dado, en términos absolutos (frecuencia acumulada absoluta, que se denota N) o relativos, esto es, en porcentaje (frecuencia...

Diagrama de caja y bigotes

Un diagrama de caja o gráfico de caja, también denominado diagrama de caja y bigotes o box plot, es un diagrama que pretende representar una variable estadística cuantitativa continua, de forma que puedan establecerse con precisión el valor central, la dispersión  y otras características como a...

Nivel de confianza

En relación a los intervalos de confianza con una amplitud determinada que pueden resultar respecto a un parámetro, el nivel de confianza es el porcentaje de veces que el parámetro a estimar se encontrará dentro de ese grupo de intervalos; por lo tanto, el nivel de confianza expresa la verosimilitud...