Independencia estadística

Se dice que dos variables son estadísticamente independientes cuando las distribuciones condicionadas en términos de frecuencias relativas de cada una de ellas a un valor de la otra no depende de dicho valor y además coincide con la distribución marginal de la variable en cuestión. En definitiva, dos variables estadísticas son independientes cuando los valores que pueda tomar cualquiera de ellas no influyen en absoluto en la distribución estadística de la otra.

El siguiente ejemplo nos ayudará a comprender el concepto. Supongamos que se han recogido las calificaciones de un grupo de alumnos y se han clasificado por el sexo, obteniéndose la siguiente tabla de contingencia:

Sexo (↓)/ Calificación (→): nij
Aprobado
Suspenso
Totales (ni.)
Hombre
20
30
50
Mujer
40
60
100
Totales (n.j)
60
90
N=150

Veamos como quedan las distribuciones condicionadas al sexo y la distribución marginal de las calificaciones en frecuencias relativas (por ejemplo, la frecuencia relativa del aprobado para el valor de condición "hombre" es 20/50=40%):

Sexo (↓)/ Calificación (→)
Aprobado
Suspenso
Totales (fi.)
Hombre
40%
60%
100%
Mujer
40%
60%
100%
Totales (f.j)
60/150=40%
90/150=60%
100%

Hagamos lo mismo condicionando sobre la calificación:

Sexo (↓)/ Calificación (→)
Aprobado
Suspenso
Totales (fi.)
Hombre
33.33%
33.33%
50/150=33.33%
Mujer
66.66%
66.66%
100/150=66.66%
Totales (f.j)
100%
100%
100%

Como puede observarse en la primera tabla de porcentajes la proporción de aprobados y suspensos sin tener en cuenta el sexo y teniéndolo en cuenta es exactamente la misma, y lo mismo ocurre con la proporción de hombres y mujeres según la calificación y sin tenerla en cuenta, lo que en definitiva viene a decir que el valor de una variable no influya lo más mínimo en l otra, por lo cual las dos variables son estadística independientes. 

Existe una forma más práctica de verificar la independencia estadística, ya que puede demostrarse que dos variables son independientes cuando el producto de las frecuencias marginales para cada par de valores de las variables en cuestión coincide con la frecuencia relativa para el cruce de los dos valores:

$$\cfrac{n_{ij}}{N}=\cfrac{n_{i.}}{N} \times \cfrac{n_{.j}}{N} \forall i,j$$

Veamos si se cumple en la tabla anterior:

$$\cfrac{20}{150}=\cfrac{60}{150} \times \cfrac{50}{150}$$

$$\cfrac{30}{150}=\cfrac{90}{150} \times \cfrac{50}{150}$$

$$\cfrac{40}{150}=\cfrac{60}{150} \times \cfrac{100}{150}$$

$$\cfrac{60}{150}=\cfrac{90}{150} \times \cfrac{100}{150}$$

Dado que la igualdad se cumple para todas los cruces de valores, las dos variables, el sexo y la calificación, son estadísticamente independientes. 

La independencia estadística implica correlación o asociación estadística nula entre ambas variables. Sin embargo, no ocurre lo mismo a la inversa, la incorrelación o asociación nula no implica necesariamente que las dos variables sean independientes. 



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Independencia estadística" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Frecuencia acumulada absoluta

Para una variable estadística cuantitativa, la frecuencia acumulada absoluta es el número de elementos de la muestra inferior o igual a un valor dado de la variable. Por ejemplo, para datos de calificaciones de alumnos entre 0 y 10, la frecuencia absoluta acumulada de 7 indica el número de alumnos c...

Distribución teórica de probabilidad

Una distribución teórica de probabilidad es la distribución de probabilidad que se asocia a una variable aleatoria según un modelo teórico o matemático que se ha adoptado, de modo que las probabilidades asociadas a los valores de la variable aleatoria son probabilidades teóricas y no probabilidades ...

Frecuencia de ocurrencia

La frecuencia de ocurrencia es el número de veces que ocurre un suceso en un periodo de tiempo. También puede hacer referencia al número de veces que aparece un valor omodalidad en una distribución de datos, en términos absolutos (frecuencia absoluta) o relativos (frecuencia relativa). Puede intere...

Variable estadística

Una variable estadística es un conjunto de valores referidos a una o varias características de una serie de elementos (consulta, además: caracteres estadísticos). Cuando la variable estadística se refiere a una única característica, decimos que la variable estadística es unidimensional (por ejemplo,...