Función de distribución

En teoría de probabilidades, la función de distribución, también llamada función de distribución acumulada o función de distribución acumulativa (FDA), es una función que proporciona, en el caso de una distribución de probabilidad unidimensional,  para un valor x dado, la probabilidad de que una variable aleatoria X tome un valor igual o inferior a ese valor x.  La definición se extiende de modo análogo a variables aleatorias multidimensionales. Se designa con la letra mayúscula F:

$$F_X(x)=P[X \leq x]$$

Dado que la función de distribución proporciona la probabilidad acumulada para una distribución  hasta un valor x, los valores que proporciona están comprendidos entre 0 y 1. Al tratarse de una probabilidad acumulada, la función de distribución es creciente

La función de distribución es una de las  formas de definir una distribución de probabilidad, pudiéndose calcular cualquier probabilidad a partir de ella, a través de sencillos cálculos de probabilidades.

Función de distribución para una variable aleatoria discreta

Dado que en una variable aleatoria discreta, los valores posibles están aislados,  la función de distribución avanza a saltos según se avanza a lo largo de dichos valores. Por ejemplo, al lanzar un dado y observar la puntuación obtenida, la función de distribución correspondiente a la puntuación 2 es 2/6, ya que la probabilidad de obtener 2 o menos es la probabilidad acumulada de obtener 1 y 2 puntos; dado que no hay valores posibles hasta la puntuación 3, la función de distribución hasta el valor 3 permanece constante, con el valor 2/6, y una vez que se llega al valor 3, toma el valor 3/6. 

Para desarrollar lo explicado para todos los valores posibles, construimos la siguiente tabla.  En las tres primeras columnas, se escriben los valores posibles, sus probabilidades simples y las probabilidades acumuladas. En las dos últimas columnas, se establece la función de distribución completa correspondiente en forma de tabla:

$$x$$
$$p(x)$$
 $$p(x) \ cum$$

$$x$$
$$F(x)$$




$$x < 1$$
$$0$$
$$1$$
$$1/6$$
$$1/6$$

$$1 \leq x < 2$$
$$1/6$$
$$2$$
$$1/6$$
$$2/6$$

$$2 \leq x < 3$$
$$2/6$$
$$3$$
$$1/6$$
$$3/6$$

$$3 \leq x < 4$$
$$3/6$$
$$4$$
$$1/6$$
$$4/6$$

$$4 \leq x < 5$$
$$4/6$$
$$5$$
$$1/6$$
$$5/6$$

$$5 \leq x < 6$$
$$5/6$$
$$6$$
$$1/6$$
$$6/6=1$$

$$ x \geq 6$$
$$6/6=1$$

Función de distribución para una variable aleatoria continua

En el caso de una variable aleatoria continua, la función de distribución va creciendo o acumulando probabilidad de forma continua. de esta forma, la función de distribución no avanza a saltos con en el caso de una distribución discreta, sino que se trata de un función continua estrictamente creciente en el intervalo de valores que toma la variable aleatoria. 

A partir de la función de densidad de probabilidad, en la que la probabilidad de que la variable aleatoria X tome un valor inferior a un valor dado x viene dada por el área debajo de la función a la izquierda de dicho valor x, dicha probabilidad se calcula de la siguiente forma, proporcionando directamente la función de distribución en el conjunto de valores posibles (inf: valor más pequeño en el intervalo de valores posibles):

$$F_X(x)=P[X \leq x]=\int_{inf}^xf(x)dx$$

Veamos un ejemplo. La producción diaria en toneladas de unafábrica se distribuye según la siguiente función de densidad: 

$$f_X(x)=2x \ ; \ 0<x<1$$

La función de distribución se calcula de la siguiente forma:

$$F_X(x)=P[X \leq x]=\int_{0}^x2xdx=\Bigg[2 \times \cfrac{x^2}{2}\Bigg]_0^x=x^2 \ ; \ 0\leq x \leq 1$$

Así pues, la probabilidad de producir menos de 0.5 toneladas es, recordando que la probabilidad de un punto en una distribución continua es 0:

$$P[X <0.5]=P[X\leq0.5]=F_X(x=0.5)=0.5^2=0.25$$



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Función de distribución" (en línea)   Enlace al artículo
Última actualización: 01/12/2024

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Regla de Laplace

La regla de Laplace es una regla que calcula la probabilidad de un suceso como el cociente entre el número de resultados favorables  que conllevan el suceso en cuestión entre el número total de resultados posibles del experimento aleatorio. Un ejemplo simple es el cálculo de la probabilida...

Sucesos incompatibles

Imagen: Los sucesos incompatibles son disjuntos entre sí, es decir, no pueden ocurrir a la vez.  En teoría de probabilidades, se dice que dos o más sucesos o eventos aleatorios son incompatibles, mutuamente excluyentes o disjuntos entre sí cuando no pueden ocurrir al mismo tiempo o, más exac...

Distribución normal estándar

La distribución normal estándar, distribución normal reducida o distribución normal unitaria es aquella distribución normal que tiene como media 0 y desviación típica 1. Se representa de la siguiente de la forma: $$Z \sim N(\mu=0,\sigma=1)$$ Su función de densidad viene dada de esta forma:  ...

Distribución binomial negativa (distribución de Pascal)

La distribución binomial negativa o distribución de Pascal (Blaise Pascal, 1623-1662) es la distribución de probabilidad que representa, en una secuencia independiente de eventos binarios, denominados éxito y fracaso con probabilidades respectivas p y q=1-p, el número de fracasos hasta el acaecimien...