Método de los momentos

En estadística, el método de los momentos es un método para obtener estimadores de parámetros de un modelo probabilístico, que a partir de los momentos del modelo o población, de menor a mayor orden, y los iguala con los momentos muestrales correspondientes. Los momentos poblacionales dependen de los parámetros del modelo, de manera que, igualados con los momentos muestrales, se crea un sistema de ecuaciones desde el que se pueden despejar los parámetros a estimar. Un ejemplo sencillo es la estimación por momentos de la media \(\mu \) de una población normal: el momento poblacional de primer orden es \(\mu\) y el momento muestral de primer orden  es \(\overline{x}\), es decir, la media aritmética simple; igualando ambos se obtiene un estimador de la media poblacional según el método de los momentos: \(\hat {\mu} =\overline {x}\). Demos otro ejemplo pero con dos parámetros a estimar, \(a \) y \(b\); suponiendo que los primeros y segundos momentos poblacionales sean \(a+b\) y \(a-b\), los igualamos a los momentos muestrales de primer y segundo orden:

$$
\begin{array}{ccc}
a+b & = & \overline{x} \\
a-b & = & \dfrac{\sum x_i^2}{n}
\end{array}$$

Despejando \(a\) eta \(b\) obtenemos sus estimadores por momentos:

$$\hat{a}=\dfrac{\overline{x}+\dfrac{\sum x_i^2}{n}}{2}$$
$$\hat{b}=\dfrac{\overline{x}-\dfrac{\sum x_i^2}{n}}{2}$$.

La ventaja evidente del método de los momentos es su simplicidad. Sin embargo, no suele proporcionar estimadores con buenas propiedades; de hecho frecuentemente proporciona estimadores sesgados. 



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Método de los momentos" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Coeficiente de determinación ajustado (coeficiente de determinación corregido)

Cuando se calcula el coeficiente de determinación para un modelo de regresión estimado en su fórmula original, puede observarse que este siempre aumenta cuando se incrementa el número de regresores, de modo que cuando se van introduciendo regresores en un modelo se obtiene la falsa impresión de que ...

Coeficiente de correlación biserial puntual

El coeficiente de correlación biserial puntual o coeficiente de correlación punto-biserial es un coeficiente que mide la correlación o relación estadística entre una variable cuantitativa y una variable dicotómica genuina o pura, esto es, que no ha sido el objeto de una dicotomización artificial. Un...

Puntuación estándar (puntuación tipificada, valor z)

Una puntuación estándar o estandarizada, puntuación tipificada o valor z (generalmente expresado con la letra z) es un valor de una variable estadística al que se ha sustraido la media y el resultado se ha dividido entre la desviación típica o estándar. Dada una variable estadística formada por los ...

Individuo (unidad estadística)

Un individuo o unidad estadística es cada uno de los elementos que forma una población estadística. A pesar que el término individuo se refiere en su acepción habitual a personas individuales, en estadística un individuo puede referirse a cualquier ser vivo, vegetal o animal. Los individuos o unidad...