Método de los momentos

En estadística, el método de los momentos es un método para obtener estimadores de parámetros de un modelo probabilístico, que a partir de los momentos del modelo o población, de menor a mayor orden, y los iguala con los momentos muestrales correspondientes. Los momentos poblacionales dependen de los parámetros del modelo, de manera que, igualados con los momentos muestrales, se crea un sistema de ecuaciones desde el que se pueden despejar los parámetros a estimar. Un ejemplo sencillo es la estimación por momentos de la media \(\mu \) de una población normal: el momento poblacional de primer orden es \(\mu\) y el momento muestral de primer orden  es \(\overline{x}\), es decir, la media aritmética simple; igualando ambos se obtiene un estimador de la media poblacional según el método de los momentos: \(\hat {\mu} =\overline {x}\). Demos otro ejemplo pero con dos parámetros a estimar, \(a \) y \(b\); suponiendo que los primeros y segundos momentos poblacionales sean \(a+b\) y \(a-b\), los igualamos a los momentos muestrales de primer y segundo orden:

$$
\begin{array}{ccc}
a+b & = & \overline{x} \\
a-b & = & \dfrac{\sum x_i^2}{n}
\end{array}$$

Despejando \(a\) eta \(b\) obtenemos sus estimadores por momentos:

$$\hat{a}=\dfrac{\overline{x}+\dfrac{\sum x_i^2}{n}}{2}$$
$$\hat{b}=\dfrac{\overline{x}-\dfrac{\sum x_i^2}{n}}{2}$$.

La ventaja evidente del método de los momentos es su simplicidad. Sin embargo, no suele proporcionar estimadores con buenas propiedades; de hecho frecuentemente proporciona estimadores sesgados. 



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Método de los momentos" (en línea)   Enlace al artículo
Última actualización: 06/05/2025

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Formas paralelas de un test

La expresión formas paralelas de un test, pruebas paralelas, test paralelos o modelo de test paralelos  hace referencia a dos tests o pruebas psicométricas que supuestamente miden la misma actitud o conducta. Un modo de construir formas paralelas es construir dos tests a partir de un único test...

Distribución sesgada

En estadística, una distribución de frecuencias o una distribución de probabilidad sesgada hace referencia a una distribución asimétrica, en la que la media, mediana y moda no coniciden.  Para profundizar Asimetría estadística ...

Nivel de significación

En estadística, el nivel de significación o nivel de significancia (conocido también como nivel  \(\alpha\) o nivel alfa) es el umbral de probabilidad máxima que se fija para la ocurrencia de una evidencia, generalmente el valor de un estadístico muestral, que conduce a afirmar que la evidencia...

Hipótesis estadística

Las hipótesis estadísticas son afirmaciones tentativas sobre parámetros y características de una población estadística que se establecen con el objetivo de ser validadas o confirmadas, o si no, rechazadas, en base a la información recogida de una muestra perteneciente a esa población. Puede interes...