Método de los momentos

En estadística, el método de los momentos es un método para obtener estimadores de parámetros de un modelo probabilístico, que a partir de los momentos del modelo o población, de menor a mayor orden, y los iguala con los momentos muestrales correspondientes. Los momentos poblacionales dependen de los parámetros del modelo, de manera que, igualados con los momentos muestrales, se crea un sistema de ecuaciones desde el que se pueden despejar los parámetros a estimar. Un ejemplo sencillo es la estimación por momentos de la media \(\mu \) de una población normal: el momento poblacional de primer orden es \(\mu\) y el momento muestral de primer orden  es \(\overline{x}\), es decir, la media aritmética simple; igualando ambos se obtiene un estimador de la media poblacional según el método de los momentos: \(\hat {\mu} =\overline {x}\). Demos otro ejemplo pero con dos parámetros a estimar, \(a \) y \(b\); suponiendo que los primeros y segundos momentos poblacionales sean \(a+b\) y \(a-b\), los igualamos a los momentos muestrales de primer y segundo orden:

$$
\begin{array}{ccc}
a+b & = & \overline{x} \\
a-b & = & \dfrac{\sum x_i^2}{n}
\end{array}$$

Despejando \(a\) eta \(b\) obtenemos sus estimadores por momentos:

$$\hat{a}=\dfrac{\overline{x}+\dfrac{\sum x_i^2}{n}}{2}$$
$$\hat{b}=\dfrac{\overline{x}-\dfrac{\sum x_i^2}{n}}{2}$$.

La ventaja evidente del método de los momentos es su simplicidad. Sin embargo, no suele proporcionar estimadores con buenas propiedades; de hecho frecuentemente proporciona estimadores sesgados. 



Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Método de los momentos" (en línea)   Enlace al artículo
Última actualización: 27/08/2024

¿Tienes preguntas sobre este artículo?

Envíanos tu pregunta e intentaremos responderte lo antes posible.

Nombre
Email
Tu pregunta
Sigue aprendiendo en Audible

Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!


Moda absoluta y moda relativa

En relación a la moda de una variable estadística, cabe distinguir entre moda absoluta y moda relativa. La moda absoluta es el valor con mayor frecuencia de todos los valores de la variable estadística, es decir, es la moda en sentido estricto. Pero por otro lado, también se distingue la moda re...

Frecuencia de servicio

Frecuencia de servicio es el número de veces que se ofrece y realiza un servicio determinado (de transporte, desplazamiento, atención de clientes, entrega de pedidos,...) en un sistema, instalación o infraestructura, tanto en un intervalo de tiempo concreto como en promedio para una serie de interva...

Media poblacional

La media poblacional, generalmente denotada por la letra griega \(\mu\) (mu), es la media de todos los valores que toman los elementos de una población finita respecto de una variable de estudio o, alternativamente, la esperanza matemática o valor esperado en el caso que se haya establecido para la ...

Factores de predisposición

Los factores de predisposición son aquellos factores de riesgo o causas componentes que incrementan la probabilidad de sufrir una enfermedad o patología, es decir, aumentan la susceptibilidad del sujeto, pero sin constituir una causa directa o indirecta de la aparición de la enfermedad.  Puede...