Método de los momentos
En estadística, el método de los momentos es un método para obtener estimadores de parámetros de un modelo probabilístico, que a partir de los momentos del modelo o población, de menor a mayor orden, y los iguala con los momentos muestrales correspondientes. Los momentos poblacionales dependen de los parámetros del modelo, de manera que, igualados con los momentos muestrales, se crea un sistema de ecuaciones desde el que se pueden despejar los parámetros a estimar. Un ejemplo sencillo es la estimación por momentos de la media \(\mu \) de una población normal: el momento poblacional de primer orden es \(\mu\) y el momento muestral de primer orden es \(\overline{x}\), es decir, la media aritmética simple; igualando ambos se obtiene un estimador de la media poblacional según el método de los momentos: \(\hat {\mu} =\overline {x}\). Demos otro ejemplo pero con dos parámetros a estimar, \(a \) y \(b\); suponiendo que los primeros y segundos momentos poblacionales sean \(a+b\) y \(a-b\), los igualamos a los momentos muestrales de primer y segundo orden:
$$
\begin{array}{ccc}
a+b & = & \overline{x} \\
a-b & = & \dfrac{\sum x_i^2}{n}
\end{array}$$
Despejando \(a\) eta \(b\) obtenemos sus estimadores por momentos:
$$\hat{a}=\dfrac{\overline{x}+\dfrac{\sum x_i^2}{n}}{2}$$
$$\hat{b}=\dfrac{\overline{x}-\dfrac{\sum x_i^2}{n}}{2}$$.
La ventaja evidente del método de los momentos es su simplicidad. Sin embargo, no suele proporcionar estimadores con buenas propiedades; de hecho frecuentemente proporciona estimadores sesgados.
Como citar: Sarasola, Josemari (2024) en ikusmira.org
"Método de los momentos" (en línea) Enlace al artículo
Última actualización: 27/08/2024
¿Tienes preguntas sobre este artículo?
Envíanos tu pregunta e intentaremos responderte lo antes posible.
Apoya nuestro contenido registrándote en Audible, sigue aprendiendo gratis a través de este link!